1. QR 分解的形式

QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积。QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法即QR算法的基础。用图可以将分解形象地表示成:

其中, Q 是一个标准正交方阵, R 是上三角矩阵。

2. QR 分解的求解

QR 分解的实际计算有很多方法,例如 Givens 旋转、Householder 变换,以及 Gram-Schmidt 正交化等等。每一种方法都有其优点和不足。上一篇博客介绍了 Givens 旋转和 Householder 变换, 第三种方法线性代数课程里面已经非常常见。下面用 Householder 变换的方法推导中间的过程。

假设 A 是一个 5×4 的矩阵,用 × 号表示本次变换未变化的元素,用 + 号表示本次发生变换的元素, H 矩阵等效于对右侧的 A 矩阵进行行操作:

四次变换之后, A 就转化成一个上三角矩阵。并且如果 A 是列向量不相关,则 R 矩阵是非奇异矩阵。

由于 H1, H2, H3, H4 都是标准化正交矩阵,那么 QT 也是标准正交矩阵。

根据矩阵相乘的性质,由于 R 下面都是 0 元素,因此,可以将 Q 矩阵对应分解成 Q1 和 Q2 两个部分,后面乘以 0 向量的部分可以省略,这就是 thin QR 分解:

上式中 R 的列向量可以看做是以 Q1 列向量为基的子空间的坐标。

3. 用 QR 解决最小二乘法

这个系列的第一篇博客就用 Normal equations 的方法解决了最小二乘的问题,具体来说使用了“伪逆”,但是这种做法存在缺陷,比如计算量大和浮点数运算中 roundoff 的问题。现在我们尝试用 QR 的方法来试一试。对于一个 OverDeterminded 的矩阵 A, 最小二乘的问题可以归结为:

将 A 进行 QR 分解,很容易可以推导出目标函数(残差的平方):

其中, 

后面一项是硬伤,没有办法优化,令前面一项等于 0, 可以得到最小二乘法的 solution:

而且有一个好处是,用 Householder 变换得到的 P1, P2, P3...等,我们完全没有必要把用 Q = P1P2P3 显性地求出来,而是将 b 向量添加到 A 矩阵右侧, 与 A 一起做 Householder 变换即可:

另外一个福利是:由于 Householder 变换和平面旋转变换对于浮点运算的 rounding error 问题有优良的性质,QR 分解方法比 Normal equations 的条件数更小, 某些问题的 solution 也更加精确。

4. 更新最小二乘的解集

在一些应用里面,系统要求我们实时更新解集,但是样本数据是逐渐产生的,也就是说矩阵 A 和向量 b 是逐渐变长的,如何在已有的解集上进行更新?

问题可以描述如下:假设现在已经将产生的数据进行了 QR 分解,新产生的数据是 a 和 beta,

由于中间的 Q_2^T b 对于运算没有作用,我们暂且将它扔掉,用 × 表示不变的元素,用 + 表示变化的元素,我们的主要思路是用 Givens 旋转操作(上一篇博客有介绍,实际上 Householder 变换和 Givens 旋转都是左乘一个标准化的正交矩阵,在这里是等效的),先对第 1 行和第 n+1 行进行旋转,然后对第 2 行和地 n+1 行进行旋转... 一步一步求出更新后的 R 和 Q1b:

第一行和第 n+1 行进行旋转:

第二行和第 n+1 行进行旋转:

依次进行,直到:

最终得到解集。

机器学习中的矩阵方法03:QR 分解的更多相关文章

  1. 机器学习中的矩阵方法04:SVD 分解

    前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...

  2. 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)

    http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...

  3. 机器学习中的矩阵方法(附录A): 病态矩阵与条件数

    1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 4 ...

  4. 机器学习中的标准化方法(Normalization Methods)

    希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我 ...

  5. 【矩阵】RQ/QR 分解

    Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...

  6. 再谈机器学习中的归一化方法(Normalization Method)

    机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...

  7. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  8. QR分解与最小二乘

    主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...

  9. QR分解与最小二乘(转载自AndyJee)

    转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...

随机推荐

  1. ubuntu下ROS安装时sudo rosdep init和rosdep update的解决方法

    问题: 在ubuntu上多次安装matlab选择合适的版本来调用摄像头,终于把系统搞坏了,重装系统后,ROS无法安装,每次安装到sudo rosdep init和rosdep update报错的问题, ...

  2. 请叫我机智-巧用ios朗读kindle图书

    想必大家都有想过kindle出中文的有声阅读刊物吧? 今天突发奇想想到一招能够让我们听自己拿kindle买的中文图书.当然这是有条件的. 前提是你得有一个ios设备,不管是iphone还是ipad,i ...

  3. 2014 Super Training #4 B Problem Arrangement --状压DP

    原题:ZOJ 3777  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...

  4. AC日记——搞笑世界杯 codevs 1060(dp)

    题目描述 Description 随着世界杯小组赛的结束,法国,阿根廷等世界强队都纷纷被淘汰,让人心痛不已. 于是有 人组织了一场搞笑世界杯,将这些被淘汰的强队重新组织起来和世界杯一同比赛.你和你的朋 ...

  5. velocity .vm

    关于.vm 后缀的文件,是velocity的文件.velocity是基于java的一种页面模板引擎,支持#if #else #foreach等写法的前台文件.$link.contextPath是该引擎 ...

  6. Bitbucket免费的私有仓库

    1.官网 https://bitbucket.org/ 2.介绍 知乎:http://www.zhihu.com/question/20053312 建议同时用Bitbucket和Github,理由如 ...

  7. 教你10分钟内在Windows上完成Rails开发环境的安装和配置

    原文:http://www.cnblogs.com/tambor/archive/2011/12/25/rails_anzhuang_railsinstaller.html 一般来说,Windows开 ...

  8. [转]curl_multi 实现准多进程发请求

    FROM : http://blog.sina.com.cn/s/blog_515b90d00100jtnv.html curl_multi函数族:curl_multi_closecurl_multi ...

  9. Nginx+UWSGI+Django配置全过程

    重度参阅 原理+实战http://zhou123.blog.51cto.com/4355617/1688434 原理http://www.cnblogs.com/fnng/p/5268633.html ...

  10. 3D数学基础:四元数与欧拉角之间的转换

    在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点.本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 单位四元数可视化为三维矢量加上第四 ...