机器学习中的矩阵方法03:QR 分解
1. QR 分解的形式
QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积。QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法即QR算法的基础。用图可以将分解形象地表示成:

其中, Q 是一个标准正交方阵, R 是上三角矩阵。
2. QR 分解的求解
QR 分解的实际计算有很多方法,例如 Givens 旋转、Householder 变换,以及 Gram-Schmidt 正交化等等。每一种方法都有其优点和不足。上一篇博客介绍了 Givens 旋转和 Householder 变换, 第三种方法线性代数课程里面已经非常常见。下面用 Householder 变换的方法推导中间的过程。
假设 A 是一个 5×4 的矩阵,用 × 号表示本次变换未变化的元素,用 + 号表示本次发生变换的元素, H 矩阵等效于对右侧的 A 矩阵进行行操作:



四次变换之后, A 就转化成一个上三角矩阵。并且如果 A 是列向量不相关,则 R 矩阵是非奇异矩阵。

由于 H1, H2, H3, H4 都是标准化正交矩阵,那么 QT 也是标准正交矩阵。
根据矩阵相乘的性质,由于 R 下面都是 0 元素,因此,可以将 Q 矩阵对应分解成 Q1 和 Q2 两个部分,后面乘以 0 向量的部分可以省略,这就是 thin QR 分解:

上式中 R 的列向量可以看做是以 Q1 列向量为基的子空间的坐标。
3. 用 QR 解决最小二乘法
这个系列的第一篇博客就用 Normal equations 的方法解决了最小二乘的问题,具体来说使用了“伪逆”,但是这种做法存在缺陷,比如计算量大和浮点数运算中 roundoff 的问题。现在我们尝试用 QR 的方法来试一试。对于一个 OverDeterminded 的矩阵 A, 最小二乘的问题可以归结为:

将 A 进行 QR 分解,很容易可以推导出目标函数(残差的平方):

其中, 
后面一项是硬伤,没有办法优化,令前面一项等于 0, 可以得到最小二乘法的 solution:

而且有一个好处是,用 Householder 变换得到的 P1, P2, P3...等,我们完全没有必要把用 Q = P1P2P3 显性地求出来,而是将 b 向量添加到 A 矩阵右侧, 与 A 一起做 Householder 变换即可:

另外一个福利是:由于 Householder 变换和平面旋转变换对于浮点运算的 rounding error 问题有优良的性质,QR 分解方法比 Normal equations 的条件数更小, 某些问题的 solution 也更加精确。
4. 更新最小二乘的解集
在一些应用里面,系统要求我们实时更新解集,但是样本数据是逐渐产生的,也就是说矩阵 A 和向量 b 是逐渐变长的,如何在已有的解集上进行更新?
问题可以描述如下:假设现在已经将产生的数据进行了 QR 分解,新产生的数据是 a 和 beta,

由于中间的 Q_2^T b 对于运算没有作用,我们暂且将它扔掉,用 × 表示不变的元素,用 + 表示变化的元素,我们的主要思路是用 Givens 旋转操作(上一篇博客有介绍,实际上 Householder 变换和 Givens 旋转都是左乘一个标准化的正交矩阵,在这里是等效的),先对第 1 行和第 n+1 行进行旋转,然后对第 2 行和地 n+1 行进行旋转... 一步一步求出更新后的 R 和 Q1b:

第一行和第 n+1 行进行旋转:

第二行和第 n+1 行进行旋转:

依次进行,直到:

最终得到解集。
机器学习中的矩阵方法03:QR 分解的更多相关文章
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...
- 机器学习中的矩阵方法(附录A): 病态矩阵与条件数
1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 4 ...
- 机器学习中的标准化方法(Normalization Methods)
希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我 ...
- 【矩阵】RQ/QR 分解
Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...
- 再谈机器学习中的归一化方法(Normalization Method)
机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- QR分解与最小二乘
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...
- QR分解与最小二乘(转载自AndyJee)
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...
随机推荐
- poj1125&zoj1082Stockbroker Grapevine(Floyd算法)
Stockbroker Grapevine Time Limit: 1000MS Memory Limit: 10000K Description Stockbrokers are known to ...
- Linux 磁盘与文件系统管理
介绍一本书叫<Linux 鸟哥私房菜>, 一本教人用linux很经典的一本书,这两天又看了里面的一章节,做一点笔记.有一些很细节的东西的, 在平时运用过很容易被忽略. 1)U盘使用的文件格 ...
- js 操作select和option
js 操作select和option 1.动态创建select function createSelect(){ var mySelect = document.createElement_x(&qu ...
- ubuntu更新删除旧内核的shell脚本
ubuntu经常提示要更新内核,更新几次后 /boot目录就满了,再更新就提示目录没空间了,这时候就需要删除不用的老旧内核,之前都是uname, grep, dpkg之类的命令一条条敲,然后用眼睛看需 ...
- 边工作边刷题:70天一遍leetcode: day 72
Missing Range 要点:题简单,这类题的特点都是记录上一步的状态,比如这题是end 错误点: 三种情况:一是连续的,即和上一个end差1,而是中间只差1个数,没有'->',最后是大于1 ...
- Spring MVC Spring MyBatis 整合 - 快速上手
我个人比较喜欢写注释,在工作中对注释的重要性看的也比较高,所以大部分文字都在注释中,代码外的文字会写的偏少,关键能懂就行 先看一下整合后的工程目录(单工程,多工程以后会采用maven) 5个packa ...
- Struts登录
- VS2010引用App_Code下的类文件问题解决方法
原文连接:http://blog.csdn.net/zjlovety/article/details/7658528 VS2020中“添加ASP.NET文件夹”里没有App_Code,添加普通文件夹然 ...
- Download the WDK, WinDbg, and associated tools
Download the WDK, WinDbg, and associated tools This is where you get your Windows Driver Kit (WDK) a ...
- SpringMVC Controller介绍(转)
SpringMVC Controller 介绍 一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理 ...