机器学习中的矩阵方法03:QR 分解
1. QR 分解的形式
QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积。QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法即QR算法的基础。用图可以将分解形象地表示成:

其中, Q 是一个标准正交方阵, R 是上三角矩阵。
2. QR 分解的求解
QR 分解的实际计算有很多方法,例如 Givens 旋转、Householder 变换,以及 Gram-Schmidt 正交化等等。每一种方法都有其优点和不足。上一篇博客介绍了 Givens 旋转和 Householder 变换, 第三种方法线性代数课程里面已经非常常见。下面用 Householder 变换的方法推导中间的过程。
假设 A 是一个 5×4 的矩阵,用 × 号表示本次变换未变化的元素,用 + 号表示本次发生变换的元素, H 矩阵等效于对右侧的 A 矩阵进行行操作:



四次变换之后, A 就转化成一个上三角矩阵。并且如果 A 是列向量不相关,则 R 矩阵是非奇异矩阵。

由于 H1, H2, H3, H4 都是标准化正交矩阵,那么 QT 也是标准正交矩阵。
根据矩阵相乘的性质,由于 R 下面都是 0 元素,因此,可以将 Q 矩阵对应分解成 Q1 和 Q2 两个部分,后面乘以 0 向量的部分可以省略,这就是 thin QR 分解:

上式中 R 的列向量可以看做是以 Q1 列向量为基的子空间的坐标。
3. 用 QR 解决最小二乘法
这个系列的第一篇博客就用 Normal equations 的方法解决了最小二乘的问题,具体来说使用了“伪逆”,但是这种做法存在缺陷,比如计算量大和浮点数运算中 roundoff 的问题。现在我们尝试用 QR 的方法来试一试。对于一个 OverDeterminded 的矩阵 A, 最小二乘的问题可以归结为:

将 A 进行 QR 分解,很容易可以推导出目标函数(残差的平方):

其中, 
后面一项是硬伤,没有办法优化,令前面一项等于 0, 可以得到最小二乘法的 solution:

而且有一个好处是,用 Householder 变换得到的 P1, P2, P3...等,我们完全没有必要把用 Q = P1P2P3 显性地求出来,而是将 b 向量添加到 A 矩阵右侧, 与 A 一起做 Householder 变换即可:

另外一个福利是:由于 Householder 变换和平面旋转变换对于浮点运算的 rounding error 问题有优良的性质,QR 分解方法比 Normal equations 的条件数更小, 某些问题的 solution 也更加精确。
4. 更新最小二乘的解集
在一些应用里面,系统要求我们实时更新解集,但是样本数据是逐渐产生的,也就是说矩阵 A 和向量 b 是逐渐变长的,如何在已有的解集上进行更新?
问题可以描述如下:假设现在已经将产生的数据进行了 QR 分解,新产生的数据是 a 和 beta,

由于中间的 Q_2^T b 对于运算没有作用,我们暂且将它扔掉,用 × 表示不变的元素,用 + 表示变化的元素,我们的主要思路是用 Givens 旋转操作(上一篇博客有介绍,实际上 Householder 变换和 Givens 旋转都是左乘一个标准化的正交矩阵,在这里是等效的),先对第 1 行和第 n+1 行进行旋转,然后对第 2 行和地 n+1 行进行旋转... 一步一步求出更新后的 R 和 Q1b:

第一行和第 n+1 行进行旋转:

第二行和第 n+1 行进行旋转:

依次进行,直到:

最终得到解集。
机器学习中的矩阵方法03:QR 分解的更多相关文章
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...
- 机器学习中的矩阵方法(附录A): 病态矩阵与条件数
1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 4 ...
- 机器学习中的标准化方法(Normalization Methods)
希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我 ...
- 【矩阵】RQ/QR 分解
Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...
- 再谈机器学习中的归一化方法(Normalization Method)
机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- QR分解与最小二乘
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...
- QR分解与最小二乘(转载自AndyJee)
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...
随机推荐
- python Basic usage
__author__ = 'student' l=[] l=list('yaoxiaohua') print l print l[0:2] l=list('abc') print l*3 l.appe ...
- c++获取sqlite3数据库表中所有字段的方法
常用方法: 1.使用sqlite3_get_table函数 2.获取sqlite创建表的sql语句字符串,然后进行解析获取到相应的字段 3.采用配置文件的方式,将所有字段名写入配置文件 方法1:使用s ...
- Jetson TK1刷机+配置Mini PCI-e无线网卡
最近买了台4K电视,觉得可以当显示器用,但没主机,不知怎的想到了Jetson TK1,于是一冲动买了.因为没网线,而Jetson TK1没有无线网卡,所以也折腾了一番,记录一下,给万一也有像我一样没有 ...
- 常用Eclipse插件在线安装地址
Srping IDE http://www.springsource.com/update/e3.5 EasyShellhttp://pluginbox.sourceforge.net M2E ...
- 大话redis/memcache缓存
通常情况下,随着业务量增加,对后端数据库的访问压力也会随之加大.当数据库访问压力渐渐增大时,除了升级数据库配置提高数据库本身的抗压能力外,我们也可以采用在应用服务器与数据库服务器之间架设数据库缓存服务 ...
- ie6,ie7兼容性总结(转)
其实浏览器的不兼容,我们往往是各个浏览器对于一些标准的定义不一致导致的,因此,我们可以进行一些初始化,很多问题都很轻松解决. 下面是14条特殊情况仅供参考: 1. 文字本身的大小不兼容.同样是font ...
- 微软职位内部推荐-Software Development Engineer 2
微软近期Open的职位: SDE II Organization Summary: Engineering, Customer interactions & Online (ECO) is l ...
- C++ c++初识
//c++初识 #include<iostream> //包含c++标准头文件 //<iostream>和<iostream.h>格式不一样,前者没有后缀,实际上, ...
- C语言 文件操作3--文件重定向与扫描
//文件重定向和扫描 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> //fprint ...
- react native 底部按钮切换
在react native 中底部按钮的切换 主要的是运用的是<TabBarNavigator/>这个组件,具体的代码实现如下: render() { return ( <T ...