#include<cstdio>
#include<iostream>
#define ll long long
#define N 10000009
using namespace std;
int jie[N],ine[N],sum[N];
int T,R,n,m,tot,zhan[N];
bool mark[N];
void exgcd(int a1,int a2,int &x,int &y)
{
if(!a2)
{
x=;
y=;
return;
}
exgcd(a2,a1%a2,x,y);
int t=x;
x=y;
y=t-a1/a2*y;
}
int main()
{
scanf("%d%d",&T,&R);
jie[]=;
for(int i=;i<=N-;i++)
jie[i]=(ll)jie[i-]*i%R;
for(int i=;i<=N-;i++)
{
if(!mark[i])
{
int y;
exgcd(i,R,ine[i],y);
ine[i]=(ine[i]+R)%R;
zhan[++tot]=i;
}
for(int j=;j<=tot&&zhan[j]*i<=N;j++)
{
mark[zhan[j]*i]=;
if(i%zhan[j]==)
break;
}
}
sum[]=;
for(int i=;i<=N-;i++)
{
sum[i]=sum[i-];
if(!mark[i])
sum[i]=(ll)sum[i]*(i-)%R*ine[i]%R;
}
for(;T;T--)
{
scanf("%d%d",&n,&m);
printf("%d\n",(ll)jie[n]*sum[m]%R);
}
return ;
}

答案为n!/m!*phi(m!) 化简后就变成了n!*(p1-1)/p1*(p2-1)/p2*......

预处理n!与后面那些数,答案就可以很快求出来。当然除的话要用逆元。

bzoj 2186: [Sdoi2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  4. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  5. bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...

  6. BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】

    题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论    对于两个正整数和,如果是的倍数,那么中与互素的数的个数为      本结论是很好证明的,因为中与互素的个数为,又知道, ...

  7. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  8. bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数

    n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...

  9. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

随机推荐

  1. Python学习(3)变量类型

    目录 变量赋值 多个变量赋值 标准数据类型 Python数字 Python字符串 Python列表 Python元组 Python元字典 Python数据类型转换 type数据类型查看 变量赋值 Py ...

  2. epoll的lt和et模式的实验

    针对epoll api的两种触发模式,lt和et,仿照一些例子写了代码进行实验. #include <sys/types.h> #include <sys/socket.h> ...

  3. UIImageView 的contentMode属性

    UIViewContentModeScaleToFill UIViewContentModeScaleAspectFit UIViewContentModeScaleAspectFill UIView ...

  4. CSS 关于IE6 margin 为负数 负值的时候 正常显示的方法

    一定要加position: relative; 有时候比如margin-left的负数,还需要加上如 float:left 属性.

  5. ios 企业证书 ipa 重新签名发布

    提示:暂时不能用了,企业证书滥用 ios 企业证书 ipa 重新签名发布 1. 应用场景 当前有一个 未用企业证书签名的 ipa 文件,默认是不可以直接安装到设备上的:我们需要用企业版证书签名: 当前 ...

  6. SAP中寄售处理

    寄售分两种: 1, 供应商提供货物,我们销售 2,我们提供货物,寄售商销售 [@more@] 1, 供应商提供货物,我们销售 创建PO,购买寄售货物,categories维护成K,然后收货即可. 2, ...

  7. 使用mybatis操作mysql数据库SUM方法返回NULL解决

    使用SQL语句用函数SUM叠加的时候,默认查询没有值的情况下返回的是NULL,而实际可能我们要用的是返回0 解决: SELECT SUM(total)   FROM test_table 改成: SE ...

  8. bootstrap轮播图--兼容IE7

    <!DOCTYPE html> <html> <head> <title>Bootstrap轮播</title> <meta char ...

  9. Innodb中的事务隔离级别和锁的关系

    前言: 我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式.同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力. ...

  10. (30)odoo中的快捷标签

    * 快捷标签   提供快捷标签是为了简化代码的编码,把复杂的工作封装化   * 找到封装化的源码:  openerp/tools/convert.py   xml_import      self._ ...