【bzoj3122】 Sdoi2013—随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 (题目链接)
题意
对于一个数列${X_i}$,其递推式为:${X_{i+1}=(a*X_i+n)~mod~P}$,求最小的${i}$满足${X_i=t}$。
Solution
大家还记得数学中数列那一章吗,那么推倒这个数列的方法一定是老师重点强调过的:
$${X_{i+1}+λ=a*(X_i+λ)}$$
$${可以算出λ=\frac{b}{a-1}}$$
$${令B_i=X_i+\frac{b}{a-1}}$$
$${则B_{i+1}=a*B_i,为等比数列}$$
$${B_i=B_1*a^{i-1}}$$
$${B_i=(X_1+\frac{b}{a-1})*a^{i-1}}$$
$${\because B_i=X_i+\frac{b}{a-1}}$$
$${\therefore X_i=(X_1+\frac{b}{a-1})*a^{i-1}-\frac{b}{a-1}}$$
$${令c=(a-1)^{-1}~(mod~p)}$$
$${则X_i=(X_1+b*c)*a^{i-1}+b*c~~(mod~p)}$$
$${即求(X_1+b*c)*a^{i-1}≡t-b*c~~(mod~p)}$$
因为a的取值,我们需要考虑特殊情况并进行分类讨论。
首先要特判${X_1=t}$的情况,因为这个在后面不好处理,不如讨论之前就直接排除在外。
1.${a=0}$
这种情况下要么是${t=X_1}$,要么是${t=X_2}$,因为${X_n=b~(n>1)}$
2.${a=1}$
那么数列就可以简化为:${X_{i+1}=X_i+b}$,是一个等差数列。
即求:${X_1+b*(i-1)=t~(mod~p)}$
这可以用exgcd求解。
3.${a>=2}$
那么就是我们上面推下来的式子,先用exgcd求出${a^{i-1}}$的最小正整数解,然后用BSGS计算${i-1}$的取值。
细节
数学题就是细节多,exgcd判无解。
代码
// bzoj3122
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; map<LL,LL> mp; LL power(LL a,LL b,LL c) {
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
LL BSGS(LL a,LL b,LL p) {
LL m=ceil(sqrt(p));
LL inv=power(a,p-1-m,p),e=1;
mp.clear();mp[1]=0;
for (int i=1;i<m;i++) {
e=e*a%p;
if (!mp.count(e)) mp[e]=i;
}
for (int i=0;i<m;i++) {
if (mp.count(b)) return mp[b]+i*m+1;
b=b*inv%p;
}
return -1;
}
void exgcd(LL a,LL b,LL &d,LL &x,LL &y) {
if (b==0) {d=a;x=1;y=0;return;}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
int main() {
LL P,A,B,X1,t;
int T;scanf("%d",&T);
while (T--) {
scanf("%lld%lld%lld%lld%lld",&P,&A,&B,&X1,&t);
if (X1==t) {puts("1");continue;} //一定要特判,如果进入BSGS后b为0出来的解是-1
if (A==0) {
if (B==t) puts("2");
else puts("-1");
}
if (A==1) {
LL x,d,y;
t=(t-X1)%P;if (!t) {puts("1");continue;}
exgcd(B,P,d,x,y);
if (t%d!=0) {puts("-1");continue;}
printf("%lld\n",((t/d)*x%(P/d)+(P/d))%(P/d)+1);
}
if (A>=2) {
LL x,d,y;
LL c=power(A-1,P-2,P);
t=(t+B*c)%P;
exgcd(X1+B*c,P,d,x,y);
if (t%d!=0) {puts("-1");continue;}
x=((t/d)*x%(P/d)+(P/d))%(P/d);
printf("%lld\n",BSGS(A,x,P));
}
}
return 0;
}
【bzoj3122】 Sdoi2013—随机数生成器的更多相关文章
- bzoj3122 [SDOI2013]随机数生成器
bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
- bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...
- [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列
题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...
- BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】
题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS
[bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t n=1 当 a=1 当 a=0 判断b==t /* http: ...
- 【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1362 Solved: 531[Submit][Sta ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
随机推荐
- 浏览器初始页面设置及被hao123劫持解决办法
最近在用浏览器时打开初始页面都是hao123,喵喵喜欢简单干净的页面,就去设置初始页面. 此处放置初始页面参考(并不太难): https://jingyan.baidu.com/article/11c ...
- 国密算法--Openssl 实现国密算法(加密和解密)
上一次讲了产生密钥,这次我们讲一下加密解密的实现. 先说一下加密解密的流程,一下这些内容都是从国密局发布的国密标准文档里面摘录出来的.大家可以去国密局的网站上自己下载. 下列符号适用于本部分. A,B ...
- 2019 年软件开发人员必学的编程语言 Top 3
AI 前线导读:这篇文章将探讨编程语言世界的现在和未来,这些语言让新一代软件开发者成为这个数字世界的关键参与者,他们让这个世界变得更健壮.连接更加紧密和更有意义.开发者要想在 2019 年脱颖而出,这 ...
- Windows 本地文件搜索神器
Wox: Windows 本地文件搜索神器 下载地址: https://github.com/Wox-launcher/Wox 注: Wox只能搜索C盘下的文件,所以需要结合everything 如果 ...
- iOS中使用RNCryptor对资源文件加密(先加密后拖进项目中)
概述:IPA 在发布时,业务相关的敏感资源文件以明文的形式存储,由于没有加密保护,这些文件在应用发布后 可能被其他人获取,并结合其他漏洞和手段产生真实攻击.所以我们要 1.在设计.开发阶段,集合业务确 ...
- JavaWeb项目通过调用cmd实现备份数据库的功能
1.别急着上车,先测试一下能否成功调用cmd,可以尝试通过cmd命令打开计算器,代码如下: 2.能成功打开计算器后,证明调用cmd的方法是没错的,现在把cmd命令字符串改成我们备份数据库的 命 ...
- web06-PanduanLogin
电影网站:www.aikan66.com 项目网站:www.aikan66.com 游戏网站:www.aikan66.com 图片网站:www.aikan66.com 书籍网站:www.aikan66 ...
- ubuntu16.04+opencv3.0.0
基本步骤: http://blog.csdn.net/xuezhisdc/article/details/48691797 报错: http://www.jianshu.com/p/68ac83436 ...
- Linux下管道重定向使用以及Shell编程(操作系统)
实验名称:Linux的基本操作 实验目的: 1.了解管道和重定向 2.熟悉基本的Linux脚本的编写 实验环境:Ubuntu 12.4(32位,简体中文) 实验内容: 1.将当前用户目录下的文件清单输 ...
- printf in KEIL C51
转自:http://blog.csdn.net/it1988888/article/details/8821713 在keil中printf默认是向串口中发送数据的,所以,如果应用该函数,必须先初始化 ...