题意:

有很多台机器,可以把物件从一种状态改装成另一种状态,初始全为\(0\),最终状态全为\(1\),让你可以拼凑机器,请问最大总性能为多少,且要求输出方案。

题解:

这道题是真的水啊,我不想写太多,加一点吧。我们发现,把一个机器当作点来看的话一个机器的加工数即为点权。而点权在网络流的题目里是\(SB\),于是考虑转化为边权。而且我们要控制流量,于是考虑进行拆点。

把点拆开后,因为初始是全为\(0\)的,所以将所有初始状态为\(0\)的机器的入点与超级源点连边,而所有最终状态为\(1\)的机器的出点与超级汇点连边。然后为了形成一条工业线,就去寻找如果有两个机器\(A,B\),其中\(A\)的最终状态就是\(B\)的初始状态,那么\(A\)的出点就会向\(B\)的入点连边。也就是他们可以形成匹配,因为这里你是要跑出一条路径来。

最后跑一遍\(Dinic\),即可求得第一个答案。

那么如何去输出方案呢?另外再开一个数组记录最开始的流量,最后去一一比较,如果存在最终流量与最开始的流量不一样,那么这条边就被用了,然后输出对应的两个点即可。而这边还要你输出匹配的机器方案有几行,那就跑两次就好了。

建模:

\([1]S\)向每个初始全为\(0\)的机器连一条流量为\(INF\)的边,因为你一台机器是可以和多台匹配的,而能不能匹配和可不可以匹配取决于你们之间的关系与剩余流量

\([2]T\)向每个末尾全为\(1\)的机器连一条权值也为\(INF\)的边,因为你一末尾也可以与多台匹配

\([3]\)寻找两个可以匹配的边,这之间同样连流量为\(INF\)的边

\([4]\)每个点的入点向出点连流量为性能效率的边

\(code\):

#include<bits/stdc++.h>
#define int long long
using namespace std;
template<typename T> inline void read(T &x){
T f=1;x=0;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x*=f;
}
const int N = 205,M = 2e4,INF=2e9;
int p,n,nex[M],first[M],v[M],flow[M],num=1,ans=0;
int ss[N][N],tt[N][N],f[N];
int s,t,nxt[N],fro[N],ft[N];
void add(int from,int to,int val){
nex[++num]=first[from];
first[from]=num;
v[num]=to;
ft[num]=val;
flow[num]=val;
fro[num]=from;
}
int dep[N],q[N],no[N];
bool bfs(int s,int t){
memset(dep,0,sizeof(dep));
q[1]=s;
dep[s]=1;
no[s]=first[s];
int head=0,tail=1;
while(head!=tail){
int u=q[++head];
for(int i=first[u];i;i=nex[i]){
int to=v[i];
if(flow[i] && !dep[to]){
no[to]=first[to];
dep[to] = dep[u] + 1;
q[++tail] = to;
}
}
}
return dep[t]!=0;
}
int aim;
int dfs(int now,int fl){
if(now==aim) return fl;
int f=0;
for(int i=no[now];i&&fl;i=nex[i]){
no[now]=i;
int to=v[i];
if(flow[i] && dep[to] == dep[now]+1){
// from[to]=now;
// nxt[now]=to;
int x=dfs(to,min(fl,flow[i]));
flow[i]-=x;
flow[i^1]+=x;
fl-=x;
f+=x;
if(!fl) break;
}
}
if(!f) dep[now]=-2;
return f;
}
void mxflow(int s,int t){
aim=t;
while(bfs(s,t)){
ans+=dfs(s,1<<30);
}
return;
}
int vis[N];
signed main(){
read(p),read(n);
//一个机器有p个零件
//有n个机器
s=0;
t=2*n+1;
for(int i=1;i<=n;i++){
read(f[i]);
for(int j=1;j<=p;j++) read(ss[i][j]);
for(int j=1;j<=p;j++) read(tt[i][j]); add(i,i+n,f[i]);
add(i+n,i,0);
}
for(int i=1;i<=n;i++){
int flag=0;
for(int j=1;j<=p;j++){
if(ss[i][j]==1){
flag=1;
break;
}
}
if(!flag){
add(s,i,INF);
add(i,s,0);
}
flag=0;
for(int j=1;j<=p;j++){
if(tt[i][j]==0||tt[i][j]==2){
flag=1;
break;
}
}
if(!flag){
add(i+n,t,INF);
add(t,i+n,0);
}
} for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(i==j) continue;
int flag=0;
for(int k=1;k<=p;k++) {
if(ss[j][k]==2||tt[i][k]==ss[j][k]) continue;
flag=1;
break;
}
if(!flag){
add(i+n,j,INF);
add(j,i+n,0);
}
}
}
mxflow(s,t);
printf("%lld ",ans);
int sum=0,cnt=0;
int tot=0;
for(int i=n+1;i<t;i++){
for(int j=first[i];j;j=nex[j]){
if(v[j]>0&&v[j]<=n&&ft[j]>flow[j]){
// printf("%lld %lld %lld\n",i-n,v[j],ft[j]-flow[j]);
++cnt;
}
}
}
printf("%lld\n",cnt);
for(int i=n+1;i<t;i++){
for(int j=first[i];j;j=nex[j]){
if(v[j]>0&&v[j]<=n&&ft[j]>flow[j]){
printf("%lld %lld %lld\n",i-n,v[j],ft[j]-flow[j]);
}
}
}
return 0;
}

「POJ3436」ACM Computer Factory题解的更多相关文章

  1. POJ3436:ACM Computer Factory(最大流)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9963   Accepted: 3 ...

  2. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  3. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  4. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  5. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  6. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  7. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. POJ 3464 ACM Computer Factory

    ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...

随机推荐

  1. 如何不做登录请求而获取cookie到Jmeter里

    如何不做登录请求而获取cookie到Jmeter里? 登录被测系统后,按F12,找到如下位置,将这个表格所有信息都复制到Jmeter的HTTP Cookie管理器元件,这样就可以不需要登录,能继续发送 ...

  2. FPGA最全科普总结

    FPGA最全科普总结   FPGA 是可以先购买再设计的"万能"芯片.FPGA (Field Programmable Gate Array)现场可编程门阵列,是在硅片上预先设计实 ...

  3. 在pycham中安装win32

    导言:在应用import  win32时,需要先在pycham 中安装pywin32 ,如下为安装步骤. 一.升级pycham中的pip为最新的版本 备注:如果pip不是最新版本,直接安装pywin3 ...

  4. 性能报告之HTML5 性能测试报告

    1. 引言 1.1. 编写目的 HTML5 作为当前"最火"的跨平台.跨终端(硬件)开发语言,越来越受到前端开发者 的重视,无论是 PC 端还是当前"火热"的移 ...

  5. 基于Docker安装常用软件

    基于Docker安装常用软件 本实验介绍如何基于Docker安装常用的软件,具体包括: Ubuntu Cetnos Nginx Node.js PHP MySQL Tomcat Redis Mongo ...

  6. 【C++】Vector排序

    1.普通类型(由大到小排序) int main() { sort(v.begin(),v.end()); } 2.普通类型(由小到大排序) bool comp(const int &a,con ...

  7. 腾讯TencentOS 十年云原生的迭代演进之路

    导语 TencentOS Server (又名 Tencent Linux 简称 Tlinux) 是腾讯针对云的场景研发的 Linux 操作系统,提供了专门的功能特性和性能优化,为云服务器实例中的应用 ...

  8. Unreal如何进行材质优化?

    Hello,大家好,今天给大家带来实用的材质优化,我是木偶心没.优化在每个游戏项目里面都会涉及到,是一种为了达成相同目标,寻求并采用消耗更少资源的办法.一般会在CPU,GPU,网络和内存方便进行优化. ...

  9. Java进阶 | 泛型机制与反射原理

    一.泛型的概念 1.基础案例 泛型在Java中的应用非常广泛,最常见则是在集合容器中,先看下基础用法: public class Generic01 { public static void main ...

  10. Linux分区,格式化概念理解

    一.分区概念: 逻辑上分成不同的存储空间. 分区类型: 主分区:最多只能有4个 扩展分区:最多只能有1个. 主分区加扩展分区最多有4个. 布恩那个写入数据,只能包含逻辑分区 逻辑分区: 主分区为什么只 ...