题意:

有很多台机器,可以把物件从一种状态改装成另一种状态,初始全为\(0\),最终状态全为\(1\),让你可以拼凑机器,请问最大总性能为多少,且要求输出方案。

题解:

这道题是真的水啊,我不想写太多,加一点吧。我们发现,把一个机器当作点来看的话一个机器的加工数即为点权。而点权在网络流的题目里是\(SB\),于是考虑转化为边权。而且我们要控制流量,于是考虑进行拆点。

把点拆开后,因为初始是全为\(0\)的,所以将所有初始状态为\(0\)的机器的入点与超级源点连边,而所有最终状态为\(1\)的机器的出点与超级汇点连边。然后为了形成一条工业线,就去寻找如果有两个机器\(A,B\),其中\(A\)的最终状态就是\(B\)的初始状态,那么\(A\)的出点就会向\(B\)的入点连边。也就是他们可以形成匹配,因为这里你是要跑出一条路径来。

最后跑一遍\(Dinic\),即可求得第一个答案。

那么如何去输出方案呢?另外再开一个数组记录最开始的流量,最后去一一比较,如果存在最终流量与最开始的流量不一样,那么这条边就被用了,然后输出对应的两个点即可。而这边还要你输出匹配的机器方案有几行,那就跑两次就好了。

建模:

\([1]S\)向每个初始全为\(0\)的机器连一条流量为\(INF\)的边,因为你一台机器是可以和多台匹配的,而能不能匹配和可不可以匹配取决于你们之间的关系与剩余流量

\([2]T\)向每个末尾全为\(1\)的机器连一条权值也为\(INF\)的边,因为你一末尾也可以与多台匹配

\([3]\)寻找两个可以匹配的边,这之间同样连流量为\(INF\)的边

\([4]\)每个点的入点向出点连流量为性能效率的边

\(code\):

#include<bits/stdc++.h>
#define int long long
using namespace std;
template<typename T> inline void read(T &x){
T f=1;x=0;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x*=f;
}
const int N = 205,M = 2e4,INF=2e9;
int p,n,nex[M],first[M],v[M],flow[M],num=1,ans=0;
int ss[N][N],tt[N][N],f[N];
int s,t,nxt[N],fro[N],ft[N];
void add(int from,int to,int val){
nex[++num]=first[from];
first[from]=num;
v[num]=to;
ft[num]=val;
flow[num]=val;
fro[num]=from;
}
int dep[N],q[N],no[N];
bool bfs(int s,int t){
memset(dep,0,sizeof(dep));
q[1]=s;
dep[s]=1;
no[s]=first[s];
int head=0,tail=1;
while(head!=tail){
int u=q[++head];
for(int i=first[u];i;i=nex[i]){
int to=v[i];
if(flow[i] && !dep[to]){
no[to]=first[to];
dep[to] = dep[u] + 1;
q[++tail] = to;
}
}
}
return dep[t]!=0;
}
int aim;
int dfs(int now,int fl){
if(now==aim) return fl;
int f=0;
for(int i=no[now];i&&fl;i=nex[i]){
no[now]=i;
int to=v[i];
if(flow[i] && dep[to] == dep[now]+1){
// from[to]=now;
// nxt[now]=to;
int x=dfs(to,min(fl,flow[i]));
flow[i]-=x;
flow[i^1]+=x;
fl-=x;
f+=x;
if(!fl) break;
}
}
if(!f) dep[now]=-2;
return f;
}
void mxflow(int s,int t){
aim=t;
while(bfs(s,t)){
ans+=dfs(s,1<<30);
}
return;
}
int vis[N];
signed main(){
read(p),read(n);
//一个机器有p个零件
//有n个机器
s=0;
t=2*n+1;
for(int i=1;i<=n;i++){
read(f[i]);
for(int j=1;j<=p;j++) read(ss[i][j]);
for(int j=1;j<=p;j++) read(tt[i][j]); add(i,i+n,f[i]);
add(i+n,i,0);
}
for(int i=1;i<=n;i++){
int flag=0;
for(int j=1;j<=p;j++){
if(ss[i][j]==1){
flag=1;
break;
}
}
if(!flag){
add(s,i,INF);
add(i,s,0);
}
flag=0;
for(int j=1;j<=p;j++){
if(tt[i][j]==0||tt[i][j]==2){
flag=1;
break;
}
}
if(!flag){
add(i+n,t,INF);
add(t,i+n,0);
}
} for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(i==j) continue;
int flag=0;
for(int k=1;k<=p;k++) {
if(ss[j][k]==2||tt[i][k]==ss[j][k]) continue;
flag=1;
break;
}
if(!flag){
add(i+n,j,INF);
add(j,i+n,0);
}
}
}
mxflow(s,t);
printf("%lld ",ans);
int sum=0,cnt=0;
int tot=0;
for(int i=n+1;i<t;i++){
for(int j=first[i];j;j=nex[j]){
if(v[j]>0&&v[j]<=n&&ft[j]>flow[j]){
// printf("%lld %lld %lld\n",i-n,v[j],ft[j]-flow[j]);
++cnt;
}
}
}
printf("%lld\n",cnt);
for(int i=n+1;i<t;i++){
for(int j=first[i];j;j=nex[j]){
if(v[j]>0&&v[j]<=n&&ft[j]>flow[j]){
printf("%lld %lld %lld\n",i-n,v[j],ft[j]-flow[j]);
}
}
}
return 0;
}

「POJ3436」ACM Computer Factory题解的更多相关文章

  1. POJ3436:ACM Computer Factory(最大流)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9963   Accepted: 3 ...

  2. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  3. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  4. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  5. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  6. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  7. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. POJ 3464 ACM Computer Factory

    ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...

随机推荐

  1. [leetcode] (周赛)868. 二进制间距

    868. 二进制间距 读懂题意就出来了 class Solution { public int binaryGap(int N) { String s = Integer.toBinaryString ...

  2. openresty 学习笔记三:连接redis和进行相关操作

    openresty 学习笔记三:连接redis和进行相关操作 openresty 因其非阻塞的调用,令服务器拥有高性能高并发,当涉及到数据库操作时,更应该选择有高速读写速度的redis进行数据处理.避 ...

  3. Go语言网络通信---多用户连续通信的TCP编程

    server端: package main import ( "fmt" "net" ) func main() { //建立监听 listener, err ...

  4. Consistent 与 Mirrored 视角

    Consistent 与 Mirrored 视角 在进行分布式训练时,OneFlow 框架提供了两种角度看待数据与模型的关系,被称作 consistent 视角与 mirrored 视角. 本文将介绍 ...

  5. Nucleus 实时操作系统中断(下)

    Nucleus 实时操作系统中断(下) Nucleus RTOS兼容性 由于中断在Nucleus SE中的实现方式与Nucleus rto截然不同,因此不应期望有特定的兼容性.Nucleus RTOS ...

  6. ContOS8 配置MariaDB

    导语: 该篇文章主要记录ContOS8安装MariaDB后的一些配置内容,若想要详细了解安装过程请移步至上一篇博文! 正文: 首先对MariaDB进行相关的简单配置 使用mysql_secure_in ...

  7. SpringBoot原理深入及源码剖析(一) 依赖管理及自动配置

    前言 传统的Spring框架实现一个Web服务需要导入各种依赖jar包,然后编写对应的XML配置文件等,相较而言,SpringBoot显得更加方便.快捷和高效.那么,SpringBoot究竟是如何做到 ...

  8. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  9. vue3.0的变化

    初涉vue3.0,下面是我在demo中遇到的一些问题(我是用的vue-cli进行开发) [1]main.js中配置  第一个变化 vue2.x ===  Vue.prototype.$baseURL= ...

  10. 【NX二次开发】Block UI 选择单元

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...