题意:

      两个人玩剪刀石头布,他们玩了n把,给了你A这n把都出了什么,问你B能否会赢,其中A会限制B某些局数出的要相同,某些局数出的要不同,只要B满足他的限制,并且没没有输掉任何一把就算赢(没有输掉就是平或者赢)。

思路:

      首先考虑下,对于每一步,我们知道A出了什么,那么也就知道B在这不可以出什么,比如A在这一步出了1 那么B可以出1,2。对于每一步B都有两种选择,并且在步于步之间有一些限制,两种选择,一些限制,显然2sat,把每一次可以出的两个看成一组,一个是a,一个是~a,对于每一种限制我们只要找出它的矛盾对就行了,矛盾对的建边遵循 x ,y矛盾则有add(x ,~y) ,add(y ,~x) ,要注意这里面的
x,~x是相对而言,x = ~x^1 同时 x^1 = ~x,建边的时候别糊涂就行了,总之这个题目应该是2算是sat的简单题目。


#include<stdio.h>
#include<string.h>
#include<stack> #define N_node 20000 + 100
#define N_edge 50000 + 500

using namespace
std; typedef struct
{
int
to ,next;
}
STAR; STAR E1[N_edge] ,E2[N_edge];
int
list1[N_node] ,list2[N_node] ,tot;
int
Belong[N_node] ,cnt;
int
mark[N_node];
int
A[11000][2];
stack<int>st; void add(int a ,int b)
{

E1[++tot].to = b;
E1[tot].next = list1[a];
list1[a] = tot; E2[tot].to = a;
E2[tot].next = list2[b];
list2[b] = tot;
} void
DFS1(int s)
{

mark[s] = 1;
for(int
k = list1[s] ;k ;k = E1[k].next)
if(!
mark[E1[k].to])DFS1(E1[k].to);
st.push(s);
} void
DFS2(int s)
{

mark[s] = 1 ,Belong[s] = cnt;
for(int
k = list2[s] ;k ;k = E2[k].next)
if(!
mark[E2[k].to])DFS2(E2[k].to);
} bool
ok(int n)
{

memset(mark ,0 ,sizeof(mark));
while(!
st.empty()) st.pop();
for(int
i = 0 ;i < n * 2 ;i ++)
if(!
mark[i]) DFS1(i);
memset(mark ,0 ,sizeof(mark));
cnt = 0;
while(!
st.empty())
{
int
xin = st.top();
st.pop();
if(
mark[xin]) continue;
cnt ++;
DFS2(xin);
}
int
mk = 0;
for(int
i = 0 ;i < n * 2 && !mk ;i += 2)
if(
Belong[i] == Belong[i^1]) mk = 1;
return !
mk;
} int main ()
{
int
t ,n ,m ,i ,a ,b ,c ,cas = 1;
scanf("%d" ,&t);
while(
t--)
{

scanf("%d %d" ,&n ,&m);
for(
i = 1 ;i <= n ;i ++)
{

scanf("%d" ,&a);
A[i][0] = a;
A[i][1] = a % 3 + 1;
}

memset(list1 ,0 ,sizeof(list1));
memset(list2 ,0 ,sizeof(list2));
tot = 1;
for(
i = 1 ;i <= m ;i ++)
{

scanf("%d %d %d" ,&a ,&b ,&c);
int
x1 = a * 2 ,x2 = a * 2 + 1;
int
y1 = b * 2 ,y2 = b * 2 + 1;
if(!
c && A[a][0] != A[b][0] || c && A[a][0] == A[b][0])
add(x1 ,y1^1) ,add(y1 ,x1^1);
if(!
c && A[a][0] != A[b][1] || c && A[a][0] == A[b][1])
add(x1 ,y2^1) ,add(y2 ,x1^1);
if(!
c && A[a][1] != A[b][0] || c && A[a][1] == A[b][0])
add(x2 ,y1^1) ,add(y1 ,x2^1);
if(!
c && A[a][1] != A[b][1] || c && A[a][1] == A[b][1])
add(x2 ,y2^1) ,add(y2 ,x2^1);
}

printf("Case #%d: " ,cas ++);
if(!
ok(n)) puts("no");
else
puts("yes");
}
return
0;
}

hdu4115 2sat的更多相关文章

  1. 2-sat(石头、剪刀、布)hdu4115

    Eliminate the Conflict Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. HDU-4115 Eliminate the Conflict 2sat

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4115 题意:Alice和Bob玩猜拳游戏,Alice知道Bob每次会出什么,为了游戏公平,Bob对Al ...

  3. 2-Sat问题

    二分+2-Sat 判断是否可行 输出字典序最小的解 输出字典序可行解 其实这些都是小问题,最重要的是建图,请看论文. 特殊的建边方式,如果a b是一对,a必须选,那么就是b->a建边. HDU ...

  4. UVALive 4849 String Phone(2-sat、01染色)

    题目一眼看去以为是4-sat... 题意:给n(n<=3000)个黑方块的坐标,保证黑方块没有公共边.对于每个黑方块选一个角作为结点,使得所选结点满足输入的一个无向图.其中距离为曼哈顿距离.输出 ...

  5. POJ 3683 Priest John's Busiest Day (2-SAT)

    题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...

  6. UVa 1391 Astronauts (2SAT)

    题意:给出一些宇航员他们的年龄,x是他们的平均年龄,其中A任务只能给年龄大于等于x的人,B任务只能给小于x的人,C任务没有限制.再给出m对人,他们不能同任务.现在要你输出一组符合要求的任务安排. 思路 ...

  7. hdu 3622 Bomb Game(二分+2-SAT)

    Bomb Game Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. zoj 3717 - Balloon(2-SAT)

    裸的2-SAT,详见刘汝佳训练指南P-323 不过此题有个特别需要注意的地方:You should promise that there is still no overlap for any two ...

  9. [BZOJ 1997][HNOI2010]Planar(2-SAT)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...

随机推荐

  1. herry菌插件(B站C站)下载与安装(更新中)>>

    插件简介: 目前该插件支持chrome浏览器(谷歌浏览器).360极速浏览器等chrome内核的浏览器 最新版插件下载: 点此下载>>>> 安装方法: 1.先下载上面的的插件 ...

  2. 剑指 Offer 53 - II. 0~n-1中缺失的数字 + 二分法

    剑指 Offer 53 - II. 0-n-1中缺失的数字 Offer_53 题目详情 java代码 package com.walegarrett.offer; /** * @Author Wale ...

  3. Linux速通01 操作系统安装及简介

    操作系统 # a)操作系统的定义:操作系统是一个用来协调.管理和控制计算机硬件和软件资源的系统程序,它位于硬件和应用程序之间. # 操作系统分为 系统调用接口 和 系统内核 # b)操作系统内核的定义 ...

  4. 2020 年安装 FreeBSD 系统的基础视频

    B 站搜索 BV14i4y137mh 包含了下载,虚拟机安装,配置 SSH 等教程. https://www.bilibili.com/video/BV14i4y137mh

  5. yolo训练数据集

    最近了解了下yolov3的训练数据集部分,总结了以下操作步骤:(基于pytorch框架,请预先装好pytorch的相关组件) 1.下载ImageLabel软件对图片进行兴趣区域标记,每张图片对应一个x ...

  6. python 常用库收集

    读者您好.今天我将介绍20个属于我常用工具的Python库,我相信你看完之后也会觉得离不开它们.他们是: Requests.Kenneth Reitz写的最富盛名的http库.每个Python程序员都 ...

  7. python-实现双链表

    双链表和单链表进行比较的优点与不同 节点多了一个前驱指针域 在很多基本操作上,多了一种选择,因为双链表可以向前进行移动寻位 如果给每个节点添加一个对应的下标,那么在寻找节点时,我们可以使用二分发来进行 ...

  8. Java开发工程师面试-基础

    JDK.JRE.JVM有什么区别? JDK:Java Development Kit 针对Java程序员的产品 JRE:Java Runtime Environment是运行Java的环境集合 JVM ...

  9. 第21 章 : Kubernetes 存储架构及插件使用

    Kubernetes 存储架构及插件使用 本文将主要分享以下三方面的内容: Kubernetes 存储体系架构: Flexvolume 介绍及使用: CSI 介绍及使用. Kubernetes 存储体 ...

  10. seq 命令用法

    以指定增量从首数开始打印数字到尾数. 用法: seq [选项]... 尾数 或:seq [选项]... 首数 尾数 或:seq [选项]... 首数 增量 尾数 选项: -f, --format=格式 ...