题面传送门

题意:

\[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)}
\]

\(T\) 组测试数据,\(1 \leq T \leq 10^3\),\(1 \leq n,m \leq 10^6\)

没啥好说的,直接推式子。

\[\begin{aligned}ans&=\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)}\\&=\prod\limits_{d=1}^{\min(n,m)}\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_d\times[\gcd(i,j)=d]\\&=\prod\limits_{d=1}^{\min(n,m)}fib_d^{\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]}\end{aligned}
\]

设指数上的那一大堆玩意儿为 \(M\),那么

\[\begin{aligned}M&=\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]\\&=\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum\limits_{p|\gcd(i,j)}\mu(p)\\&=\sum\limits_{p=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor}\mu(p)\times\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor\end{aligned}
\]
\[\begin{aligned}ans&=\prod\limits_{d=1}^{\min(n,m)}fib_d^M\\&=\prod\limits_{d=1}^{\min(n,m)}fib_d^{\sum\limits_{p=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor}\mu(p)\times\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor}\\&=\prod\limits_{t=1}^{\min(n,m)}\prod\limits_{d|t}fib_d^{\mu(\frac{t}{d})\times\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}\\&=\prod\limits_{t=1}^{\min(n,m)}(\prod\limits_{d|t}fib_d^{\mu(\frac{t}{d})})^{\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}\end{aligned}
\]

把括号里的东西预处理出来然后整除分块就行了

/*
Contest: -
Problem: P3704
Author: tzc_wk
Time: 2020.9.16
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=1e9+7;
inline int qpow(int x,int e){
if(!x) return 1;
int ans=1;
while(e){
if(e&1) ans=ans*x%MOD;
x=x*x%MOD;e>>=1;
}
return ans;
}
int f[1000005],mu[1000005],p[1000005],pcnt=0,F[1000005];
bool vis[1000005];
inline void prework(int n){
f[1]=f[2]=1;
for(int i=3;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%MOD;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){p[++pcnt]=i;mu[i]=-1;}
for(int j=1;j<=pcnt&&p[j]*i<=n;j++){
vis[i*p[j]]=1;
if(i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) F[i]=1;
for(int i=1;i<=n;i++){
int inv=qpow(f[i],MOD-2);
for(int j=i;j<=n;j+=i){
if(!mu[j/i]) continue;
else if(~mu[j/i]) F[j]=F[j]*f[i]%MOD;
else F[j]=F[j]*inv%MOD;
}
}
for(int i=2;i<=n;i++)
F[i]=F[i-1]*F[i]%MOD;
}
signed main(){
prework(1e6);
int T=read();
while(T--){
int n=read(),m=read(),ans=1;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans*(qpow(F[r]*qpow(F[l-1],MOD-2)%MOD,(n/l)*(m/l)%(MOD-1))))%MOD;
}
printf("%lld\n",ans);
}
return 0;
}

洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)的更多相关文章

  1. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  2. 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)

    传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...

  3. 洛谷P3704 [SDOI2017]数字表格

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...

  4. 洛谷 P3704 SDOI2017 数字表格

    题意: 给定两个整数 \(n, m\),求: \[\prod_{i = 1} ^ n \prod_{j = 1} ^ m \operatorname{Fib}_{\gcd\left(n, m\righ ...

  5. 洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】

    题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫 ...

  6. 洛咕 P3704 [SDOI2017]数字表格

    大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...

  7. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  8. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  9. P3704 [SDOI2017]数字表格 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...

随机推荐

  1. 【UE4 调试】C++ 几种编译方法和小技巧

    编译方法 Visual Studio 2019 编译 默认编译 UnrealVS 快速编译 Editor 编译 一般 vs 编译完后,Editor会跟着热编译(有声音) 如果发现编译后代码没更新到Ed ...

  2. python的虚拟环境Anaconda使用

    Anaconda 使用conda常用命令   1.首先在所在系统中安装Anaconda.可以打开命令行输入conda -V检验是否安装以及当前conda的版本. 2.conda常用的命令. 1)con ...

  3. 设置nginx进程可打开最大的文件数

    涉及到的nginx配置参数: worker_processes: 表示操作系统启动多少个工作进程在运行,一般这个参数设置成CPU核数的倍数 worker_connections:表示nginx的工作进 ...

  4. Java 将Word保存为WPS和WPT格式

    本文通过Java示例展示将Word文档(如.doc/.docx)保存为WPS和WPT格式的方法. 程序环境配置 IntelliJ IDEA 2018(jdk 1.8.0) Word Jar包:Spir ...

  5. c++中virtual 虚函数

    转载: https://www.cnblogs.com/weiyouqing/p/7544988.html 在面向对象的C++语言中,虚函数(virtual function)是一个非常重要的概念. ...

  6. 国产新芯片连不上J-Link?芯海CS32L010系列芯片JLink配置方法

    疫情以来芯片供货紧张,特别是ST的MCU一芯难求.所以很多产品不得不切换成国产.不过也是经过使用后才发现,很多国产芯片的性能还是挺好的.由于芯片比较新,官方J-Link还没有支持,所以调试和烧录有些不 ...

  7. Java 在PPT中创建散点图

    本文将以Java代码示例展示如何在PPT幻灯片中创建散点图表. 创建图表前 需要在Java程序中导入用于操作PPT的jar包 Free Spire.Presentation for Java.可参考如 ...

  8. 你说说RPC的一个请求的流程是怎么样的?

    前言 面试的时候经常被问到RPC相关的问题,例如:你说说RPC实现原理.让你实现一个RPC框架应该考虑哪些地方.RPC框架基础上发起一个请求是怎样一个流程等等.所以这次我就总结一波RPC的相关知识点, ...

  9. 基于 Istio 的全链路灰度方案探索和实践

    作者|曾宇星(宇曾) 审核&校对:曾宇星(宇曾) 编辑&排版:雯燕 背景 微服务软件架构下,业务新功能上线前搭建完整的一套测试系统进行验证是相当费人费时的事,随着所拆分出微服务数量的不 ...

  10. 这一篇 K8S(Kubernetes)集群部署 我觉得还可以!!!

    点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 国内安装K8S的四种途径 Kubernetes 的安装其实并不复杂,因为Kubernetes 属 ...