剪绳子

题目描述

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],...,k[m]。

  • 请问k[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

题目链接: 剪绳子

代码

/**
* 标题:剪绳子
* 题目描述
* 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],...,k[m]。
* 请问k[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
* 题目链接:
* https://www.nowcoder.com/practice/57d85990ba5b440ab888fc72b0751bf8?tpId=13&&tqId=33257&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking
*/
public class Jz67 {
/**
* 方法一:贪心
* 尽可能多剪长度为 3 的绳子,并且不允许有长度为 1 的绳子出现。如果出现了,就从已经切好长度为 3 的绳子中拿出一段与长度为 1 的绳子重新
* 组合,把它们切成两段长度为 2 的绳子。
* <p>
* 证明:当 n >= 5 时,3(n - 3) - n = 2n - 9 > 0,且 2(n - 2) - n = n - 4 > 0。因此在 n >= 5 的情况下,将绳子
* 剪成一段为 2 或者 3,得到的乘积会更大。又因为 3(n - 3) - 2(n - 2) = n - 5 >= 0,所以剪成一段长度为 3 比长度为 2 得到的乘积更大。
*
* @param target
* @return
*/
public int cutRope(int target) {
if (target < 2) {
return 0;
}
if (target == 2) {
return 1;
}
if (target == 3) {
return 2;
}
int timesOf3 = target / 3;
if (target - timesOf3 * 3 == 1) {
timesOf3--;
}
int timesOf2 = (target - timesOf3 * 3) / 2;
return ((int) Math.pow(3, timesOf3)) * ((int) Math.pow(2, timesOf2));
} /**
* 方法二:动态规划
*
* @param target
* @return
*/
public int cutRope1(int target) {
int[] dp = new int[target + 1];
dp[1] = 1;
for (int i = 2; i <= target; i++) {
for (int j = 1; j < i; j++) {
dp[i] = Math.max(dp[i], Math.max(j * (i - j), dp[j] * (i - j)));
}
}
return dp[target];
} public static void main(String[] args) {
Jz67 jz67 = new Jz67();
System.out.println(jz67.cutRope(2));
System.out.println(jz67.cutRope(8));
System.out.println("动态规划");
System.out.println(jz67.cutRope1(2));
System.out.println(jz67.cutRope1(8));
}
}

【每日寄语】 苟不教,性乃迁;教之道,贵以专。

JZ-067-剪绳子的更多相关文章

  1. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  2. 《剑指offer》第十四题(剪绳子)

    // 面试题:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1]* ...

  3. 剑指offer——面试题14:剪绳子

    // 面试题14:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1 ...

  4. 【Python】剑指offer 14:剪绳子

    题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...

  5. NOJ——1672剪绳子(博弈)

    [1672] 剪绳子 时间限制: 500 ms 内存限制: 65535 K 问题描述 已知长度为n的线圈,两人依次截取1~m的长度,n, m为整数,不能取者为输. 输入 输入n, m:( 0 < ...

  6. 【剑指offer】面试题 14. 剪绳子

    面试题 14. 剪绳子 LeetCode 题目描述 给你一根长度为 n 的绳子,请把绳子剪成 m 段(m.n 都是整数,n>1 并且 m>1),每段绳子的长度记为 k[0],k[1],·· ...

  7. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  8. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  9. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

  10. 剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论

    剑指 Offer 14- I. 剪绳子 题目链接 还是343. 整数拆分的官方题解写的更清楚 本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使 ...

随机推荐

  1. Java 线程学习笔记

    1.什么是线程 进程: 一个正在运行的程序就叫一个进程. 每个进程都有独立的内存空间. (进程是资源分派的基本单位) 线程: 一个进程中可以有很多线程.----> 常说的多线程 线程没有独立的内 ...

  2. AT2274 [ARC066D] Contest with Drinks Hard

    先考虑不修改怎么做,可以令 \(dp_i\) 表示前 \(i\) 个题能获得的最大得分.那么我们有转移: \[dp_i = \min\{dp_{i - 1}, dp_{j} + \frac{(i - ...

  3. CentOS 7下iptables配置添加修改规则端口方法(转)

    简介: Linux CentOS 7默认没有安装iptables,默认的防火墙是firewalld,云吞铺子分享CentOS 7系统下iptables安装.iptables规则配置(放行或者禁用端口) ...

  4. 物理CPU,物理核,逻辑CPU,虚拟CPU(vCPU)区别 (转)

    在做虚拟化时候,遇到划分CPU的问题,因此考虑到CPU不知道具体怎么划分,查询一些资料后就写成本文. a. 物理CPU:物理CPU是相对于虚拟CPU而言的概念,指实际存在的处理器,就是我们可以看的见, ...

  5. 使用df -h命令查看磁盘空间使用率不算高,还有很多空余空间,但是创建文件或写入数据时一直报错磁盘写满

    关于磁盘空间中索引节点爆满的问题还是挺多的,借此跟大家分享一下: 一.发现问题 在公司一台配置较低的Linux服务器(内存.硬盘比较小)的/data分区内创建文件时,系统提示磁盘空间不足,用df -h ...

  6. js Array.prototype.slice.call(arguments,0) 理解

    Array.prototype.slice.call(arguments,0) 经常会看到这段代码用来处理函数的参数 网上很多复制粘帖说:Array.prototype.slice.call(argu ...

  7. 总结下Mac环境下按照appium

    第10天休息 先来总结下Mac环境下按照appium 一.相关网站 官网: http://appium.io/ 测试论坛 https://testerhome.com/wiki 二.环境准备   从官 ...

  8. Oracle 撤回已经提交的事务

    在PL/SQL操作了一条delete语句习惯性的commit 了,因少加了where条件 导致多删了数据 1.查询视图v$sqlarea,找到操作那条SQL的时间(FIRST_LOAD_TIME) s ...

  9. 在Linux中设置php变量的方法

    默认情况下已经安装好了PHP环境,并且知道安装好后的PHP文件路径,然后可以通过以下的方式设置PHP变量,快速执行PHP命令运行PHP文件. 环境:centos 第一步:vi ~/.bash_prof ...

  10. SpringMVC的web配置

    之前并没有意愿写关于下面内容的小作文.因为总结SPI相关的标准(SPI机制之JDK中的SPI - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)),而这个也是关于标准的,Servlet3.0 ...