AOE网上的关键路径

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

一个无环的有向图称为无环图(Directed
Acyclic Graph),简称DAG图。 

    AOE(Activity
On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,例如以下图所看到的:

                                     

    如上所看到的,共同拥有11项活动(11条边),9个事件(9个顶点)。整个project仅仅有一个開始点和一个完毕点。即仅仅有一个入度为零的点(源点)和仅仅有一个出度为零的点(汇点)。

    关键路径:是从開始点到完毕点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所看到的,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。

输入

    这里有多组数据,保证不超过10组,保证仅仅有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m
<=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv
!= ev,1<=w <=20)。数据保证图连通。

输出

    关键路径的权值和,而且从源点输出关键路径上的路径(假设有多条,请输出字典序最小的)。

演示样例输入

9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2

演示样例输出

18
1 2
2 5
5 7
7 9
最长路+记录字典序最小路径(即假设有多条最长路输出字典序最小的那条 比方 1->2->4 和 1->3->4 都符合最长路,那么输出1->2->4 ) 主要实现就是在松弛时,当dis[v]==dis[u]+w 时,推断一下路径的字典序来决定是否更新路径,眼下还是仅仅会暴力推断QAQ
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <cmath>
#include <map>
#include <queue>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int s1[10010], s2[10010], ans[10010], dis[10010], in[10010], out[10010], path[10010], n, m, s, e;
bool vis[10010];
vector <pair<int, int> > eg[50010];
bool ok(int u, int v)
{
int p = v, num1 = 0;
s1[num1++] = v; while (path[p] != -1) {
s1[num1++] = path[p];
p = path[p];
} p = u;
int num2 = 0;
s2[num2++] = v;
s2[num2++] = u; while (path[p] != -1) {
s2[num2++] = path[p];
p = path[p];
} int i = num1 - 1, j = num2 - 1; while (i >= 0 && j >= 0) {
if (s1[i] > s2[j]) {
return 1;
} i--;
j--;
} return 0;
}
void spfa()
{
queue <int> Q; for (int i = 1; i <= n; i++) {
dis[i] = -INF;
} dis[s] = 0;
Q.push(s); while (!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = 0; for (int i = 0; i < eg[u].size(); i++) {
int v = eg[u][i].first;
int w = eg[u][i].second; if (dis[v] < dis[u] + w) {
dis[v] = dis[u] + w;
path[v] = u; if (!vis[v]) {
vis[v] = 1;
Q.push(v);
}
} else
if (dis[v] == dis[u] + w && ok(u, v)) { path[v] = u ; if (!vis[v]) {
vis[v] = 1;
Q.push(v);
}
}
}
} }
void print()
{
int p = e, num = 0; while (path[p] != -1) {
ans[num++] = path[p];
p = path[p];
} printf("%d\n", dis[e]); for (int i = num - 1; i > 0; i--) {
printf("%d %d\n", ans[i], ans[i - 1]);
} printf("%d %d\n", ans[0], e);
}
int main()
{
int u, v, c; while (~scanf("%d %d", &n, &m)) {
for (int i = 0; i <= n; i++) {
eg[i].clear();
} memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(vis, 0, sizeof(vis));
memset(path, -1, sizeof(path)); while (m--) {
scanf("%d%d%d", &u, &v, &c);
eg[u].push_back(make_pair(v, c));
in[v]++;
out[u]++;
} for (int i = 1; i <= n; i++) {
if (!in[i]) {
s = i;
} if (!out[i]) {
e = i;
}
} spfa();
print();
} return 0;
}



SDUT 2498-AOE网上的关键路径(spfa+字典序路径)的更多相关文章

  1. SDUT 2498 AOE网上的关键路径

    AOE网上的关键路径 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 一个无环的有向图称为无 ...

  2. sdut AOE网上的关键路径(spfa+前向星)

    http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2498&cid=1304 题目描述 一个无环的有向图称为无环图(Directed Acyc ...

  3. AOE网上的关键路径(最长路径 + 打印路径)

    题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...

  4. 数据结构实验之图论十一:AOE网上的关键路径【Bellman_Ford算法】

    Problem Description 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边 ...

  5. sdut 2498【aoe 网上的关键路径】

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2498 代码超时怎么破: #include< ...

  6. SDUTOJ 2498 数据结构实验之图论十一:AOE网上的关键路径

    题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/2498.html 题目大意 略. 分析 ...

  7. SDUT-2498_AOE网上的关键路径

    数据结构实验之图论十一:AOE网上的关键路径 Time Limit: 2000 ms Memory Limit: 65536 KiB Problem Description 一个无环的有向图称为无环图 ...

  8. AOE网与关键路径简介

    前面我们说过的拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题.如果我们要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程, ...

  9. AOE网络的关键路径问题

    关于AOE网络的基本概念可以参考<数据结构>或者search一下就能找到,这里不做赘述. 寻找AOE网络的关键路径目的是:发现该活动网络中能够缩短工程时长的活动,缩短这些活动的时长,就可以 ...

随机推荐

  1. Html A标签中 href 和 onclick用法、区别、优先级别

    原文:Html A标签中 href 和 onclick用法.区别.优先级别 如果不设置 href属性在IE6下面会不响应hover.双击后会选中标签的父容器而非这个一a标签(IE下都存在这一问题). ...

  2. JAVA逆向&反混淆-追查Burpsuite的破解原理(转)

    0x00 摘要: 本系列文章通过对BurpLoader的几个版本的逆向分析,分析Burpsuite的破解原理,分析Burpsuite认证体系存在的安全漏洞. 0x01 JD-GUI的用途与缺陷: JD ...

  3. Navicat工具破解

        Navicat提供多达 7 种语言供客户选择,被公认为全球最受欢迎的数据库前端用户介面工具.它可以用来对本机或远程的 MySQL.SQL Server.SQLite.Oracle 及 Post ...

  4. jstl的小问题

    jstl试了半天,终于知道错在哪里了! 这是jsp中的代码 从select中取得user_id:看清楚了 是user_id:小写第一位; <table width="50%" ...

  5. 蚁群算法 matlab程序(已执行)

    下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处. 我经过改动添加了凝视,已经执行过,无误, function [R_best,L_best,L_av ...

  6. Windows phone 8 学习笔记(2) 数据文件操作

    原文:Windows phone 8 学习笔记(2) 数据文件操作 Windows phone 8 应用用于数据文件存储访问的位置仅仅限于安装文件夹.本地文件夹(独立存储空间).媒体库和SD卡四个地方 ...

  7. 【教你zencart仿站 文章1至6教训 高清1280x900视频下载】[支持手机端]

    [教你zencart仿站 第1至6课 高清晰1280x900视频下载][支持移动端] 经过筹备, 我们的课件最终出来了- 我们 zencart联盟合伙人 项目推出的 在线yy同步演示zencart仿站 ...

  8. SQL声明发育异常导致项目错误

    1.错误叙述性说明 严重:Exception occurred during processing request:Statement Callback;SQL[   ];OALL8处于不一致状态; ...

  9. profile与bashrc

    /etc/profile./etc/bashrc 是系统全局环境变量设定 ~/.profile,~/.bashrc用户家文件夹下的私有环境变量设定 当登入系统时候获得一个shell进程时.其读取环境设 ...

  10. Qt国际化相关类

    QTextCodec QTextCodec为文本编码之间提供转换. Qt用Unicode 来存储,绘制和操作字符串.在很多情况下你可能希望操作不同编码的数据.例如,大部分日本文档是以Shift-JIS ...