UVA 10622 - Perfect P-th Powers(数论)
UVA 10622 - Perfect P-th Powers
题意:求n转化为b^p最大的p值
思路:对n分解质因子,然后取全部质因子个数的gcd就是答案,可是这题有个坑啊。就是输入的能够是负数,负数的情况比較特殊,p仅仅能为奇数。这时候是要把答案不断除2除到为奇数就可以。
代码:
#include <stdio.h>
#include <string.h>
#include <math.h> long long n;
int prime[333333], vis[333333], m = 0;
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
} int solve() {
long long nn = n;
if (n < 0) n = -n;
int ans = 0;
for (int i = 0; i < m && prime[i] <= n; i++) {
int count = 0;
while (n % prime[i] == 0) {
count++;
n /= prime[i];
}
ans = gcd(ans, count);
}
if (ans == 0) ans = 1;
if (nn < 0) {
while (ans % 2 == 0) {
ans /= 2;
}
}
return ans;
} int main() {
for (int i = 2; i < 333333; i++) {
if (vis[i]) continue;
prime[m++] = i;
for (int j = i; j < 333333; j += i) {
vis[j] = 1;
}
}
while (~scanf("%lld", &n) && n) {
printf("%d\n", solve());
}
return 0;
}
UVA 10622 - Perfect P-th Powers(数论)的更多相关文章
- UVA 10622 Perfect P-th Powers
https://vjudge.net/problem/UVA-10622 将n分解质因数,指数的gcd就是答案 如果n是负数,将答案除2至奇数 原理:(a*b)^p=a^p*b^p #include& ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- UVA - 1218 Perfect Service(树形dp)
题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连 ...
- UVa 1218 - Perfect Service
/*---UVa 1218 - Perfect Service ---首先对状态进行划分: ---dp[u][0]:u是服务器,则u的子节点可以是也可以不是服务器 ---dp[u][1]:u不是服务器 ...
- UVa 10622 (gcd 分解质因数) Perfect P-th Powers
题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...
- uva 11752 The Super Powers (数论+枚举)
题意:找出1~2^64-1中 能写成至少两个数的幂形式的数,再按顺序输出 分析:只有幂是合数的数才是符合要求的.而幂不会超过64,预处理出64以内的合数. 因为最小的合数是4,所以枚举的上限是2的16 ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA 10831 - Gerg's Cake(数论)
UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...
- UVA 12103 - Leonardo's Notebook(数论置换群)
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...
随机推荐
- Qt 状态机框架学习(没学会)
Qt状态机框架是基于状态图XML(SCXML) 实现的.从Qt4.6开始,它已经是QtCore模块的一部分.尽管它本身是蛮复杂的一套东西,但经过和Qt的事件系统(event system).信号槽(s ...
- Mysql事务,并发问题,锁机制-- 幻读、不可重复读(转)
1.什么是事务 事务是一条或多条数据库操作语句的组合,具备ACID,4个特点. 原子性:要不全部成功,要不全部撤销 隔离性:事务之间相互独立,互不干扰 一致性:数据库正确地改变状态后,数据库的一致性约 ...
- 浅尝key-value数据库(二)——MongoDB的优与劣
浅尝key-value数据库(二)——MongoDB的优与劣 MongoDB的名字取自英文单词"humongous"的中间五个字母,是一个C++开发的基于分布式文件存储的数据库开源 ...
- 仿StackOverflow开发在线问答系统
仿StackOverflow开发在线问答系统 [第二期11月9日开课]使用Python Flask Web开发框架实现一套类似StackOverflow的在线问答平台LouQA,具备提问,回答,评论点 ...
- 【E2LSH源代码分析】p稳定分布LSH算法初探
上一节,我们分析了LSH算法的通用框架,主要是建立索引结构和查询近似近期邻.这一小节,我们从p稳定分布LSH(p-Stable LSH)入手,逐渐深入学习LSH的精髓,进而灵活应用到解决大规模数据的检 ...
- iOS 编程之 使用 Xcode6配置.pch文件
刚上手 Xcode6 的人,总会发现之前在 6 之前常常会在“利用名-Prefix.pch”这个文件中来配置我们全局要用到的头文件,但是 xcode6 没有了,人家说,这类东西有时候也会出现1些稀里糊 ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- B4A的软件下载
http://pan.baidu.com/share/home?uk=909467506#category/type=0
- Codeforces Round #199 (Div. 2) B. Xenia and Spies
B. Xenia and Spies time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Android ble 蓝牙4.0 总结
本文介绍Android ble 蓝牙4.0,也就是说API level >= 18,且支持蓝牙4.0的手机才可以使用,如果手机系统版本API level < 18,也是用不了蓝牙4.0的哦 ...