1、读取csv

import pandas as pd
df = pd.read_csv('路径/py.csv')

2、取行号

index_num = df.index

举个例子:

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8')
index_num = df.index
print(index_num)

3、取出行

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 获取行数
# index_num = df.index
# print(index_num) # 取出某一行
# row_data_1 = df.iloc[0]
# row_data_2 = df.iloc[[0]] # 取出连续的行
# row_data_3 = df.iloc[0:2]
# row_data_4 = df[0:2] # 取出不连续的行
# row_data_5 = df.iloc[[0,2]] # print(row_data_5)

只取一行

可以使用df.iloc[行号],得到的是series

也可以使用df.iloc[[行号]],得到的是dataframe

row_data_1 = df.iloc[0] # pandas series
row_data_2 = df.iloc[[0]] # dataframe

loc是显式的索引,默认第一行的行号为1,行号从1计数

iloc是隐式的索引,默认第一行的行号为0,行号从0计数

row_data_1

row_data_2

取连续的几行

可以用df.iloc[行号:行号],也可以用df[行号:行号],得到的都是dataframe

row_data_3 = df.iloc[0:2]
row_data_3 = df[0:2]

row_data_3

row_data_4

取出不连续的几行

使用df.iloc[[行号,行号]],特别注意是两个方括号,中间是逗号,得到的是dataframe

row_data_5 = df.iloc[[0,2]]

row_data_5

4、取出列

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 只取一列
# col_data_1 = df['a'] # 单独一列是个series
# col_data_2 = df.loc[:,'a'] # 同上,但比较复杂,一般不用
# col_data_3 = df.iloc[:,0] # 同上,可以在不知道列名的时候用
#
# col_data_4 = df[['a']] # 单独一列是个df
# col_data_5 = df.loc[:,['a']] # 同上,但比较复杂,一般不用
# col_data_6 = df.iloc[:,[0]] # 同上,可以在不知道列名的时候用
# print(col_data_4) # 获取指定的几列
# cols_data_1 = df[['a','b']] # DataFrame, 指定某几列,直接用列名
# cols_data_2 = df.loc[:,['a','b']] # 同上,但比较复杂,一般不用
# cols_data_3 = df.iloc[:,[0,2]] # 同上,可以在不知道列名的时候用
# print(cols_data_1) # 获取指定的连续列
# cols_data_4 = df.loc[:,'a':'d'] # 指定连续列,用列名
# cols_data_5 = df.iloc[:,0:4] # 指定连续列,用数字
# print(cols_data_4)

只取一列

col_data_1 = df['a']    # 单独一列是个series
col_data_2 = df.loc[:,'a'] # 同上,但比较复杂,一般不用
col_data_3 = df.iloc[:,0] # 同上,可以在不知道列名的时候用

以上三种均为只取一列的操作,并且是等效的,获取的都是series类型

下面三种也是等效的,但是获取的是dataframe类型

col_data_4 = df[['a']]  # 单独一列是个df
col_data_5 = df.loc[:,['a']] # 同上,但比较复杂,一般不用
col_data_6 = df.iloc[:,[0]] # 同上,可以在不知道列名的时候用

取指定的某几列

cols_data_1 = df[['a','b']]    # DataFrame, 指定某几列,直接用列名
cols_data_2 = df.loc[:,['a','b']] # 同上,但比较复杂,一般不用
cols_data_3 = df.iloc[:,[0,2]] # 同上,可以在不知道列名的时候用

获取指定的连续几列

cols_data_4 = df.loc[:,'a':'d']  # 指定连续列,用列名
cols_data_5 = df.iloc[:,0:4] # 指定连续列,用数字

5、取指定行和列

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 获取指定行列
# 第一种,列索引用数字表示
# data_1 = df.iloc[[1,3],[0]]
# data_2 = df.iloc[[1,3],0]
# data_3 = df.iloc[[1,3],1:3]
# data_4 = df.iloc[[1,3],[1,3]]
# print(data_4)
# 第二种,列索引直接引用列名
# data_5 = df.loc[1,['a','d']]
# data_6 = df.loc[[1],['a','d']]
# data_7 = df.loc[[1,3],'a':'d']
# data_8 = df.loc[[1,3],['a','d']]
# print(data_8)

列索引用数字表示

第一种情况是列索引用数字表示, df.iloc[行索引表达,列索引表达],规则跟上面行索引一模一样。

data_1 = df.iloc[[1,3],[0]]

data_2 = df.iloc[[1,3],0]  # series

data_3 = df.iloc[[1,3],1:3]

data_4 = df.iloc[[1,3],[1,3]]

列索引直接引列名

第二种情况是列索引直接引列名(行索引不存在这个问题,因为pandas没有所谓'行名'),就要用df.loc[行索引,列名索引。

data_5 = df.loc[1,['a','d']] # series

data_6 = df.loc[[1],['a','d']]

data_7 = df.loc[[1,3],'a':'d']

data_8 = df.loc[[1,3],['a','d']]

使用pandas库实现csv行和列的获取的更多相关文章

  1. POI教程之第二讲:创建一个时间格式的单元格,处理不同内容格式的单元格,遍历工作簿的行和列并获取单元格内容,文本提取

    第二讲 1.创建一个时间格式的单元格 Workbook wb=new HSSFWorkbook(); // 定义一个新的工作簿 Sheet sheet=wb.createSheet("第一个 ...

  2. python的pandas库读取csv

    首先建立test.csv原始数据,内容如下 时间,地点 一月,北京 二月,上海 三月,广东 四月,深圳 五月,河南 六月,郑州 七月,新密 八月,大连 九月,盘锦 十月,沈阳 十一月,武汉 十二月,南 ...

  3. 用pandas库对csv文件中的文本数据进行分析处理

    #数据分析 import pandas import csv old_path = r'd:\2000W\200W-400W.csv' f = open(old_path,'r',encoding=' ...

  4. Python之文件读写(csv文件,CSV库,Pandas库)

    前言 一.Python文件读取 二.读取CSV文件 一.Python文件读取 1. open函数是内置函数之with操作 - 关于路径设置的问题斜杠设置成D:\\文件夹\\文件或是D:/文件夹/文件 ...

  5. Python之使用Pandas库实现MySQL数据库的读写

      本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写.首先我们需要了解点ORM方面的知识. ORM技术   对象关系映射技术,即ORM(Object-Relational ...

  6. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  7. Pandas库常用函数和操作

    1. DataFrame 处理缺失值  dropna() df2.dropna(axis=0, how='any', subset=[u'ToC'], inplace=True) 把在ToC列有缺失值 ...

  8. python pandas库——pivot使用心得

    python pandas库——pivot使用心得 2017年12月14日 17:07:06 阅读数:364 最近在做基于python的数据分析工作,引用第三方数据分析库——pandas(versio ...

  9. 建议42:使用pandas处理大型CSV文件

    # -*- coding:utf-8 -*- ''' CSV 常用API 1)reader(csvfile[, dialect='excel'][, fmtparam]),主要用于CSV 文件的读取, ...

随机推荐

  1. MySQL系列(二)

    查看\创建\使用\删除 数据库 用户管理及授权实战 局域网远程连接法 查看\创建\使用\删除\清空\修改 数据库表(是否可空,默认值,主键,自增,外键) 表内容的增删改查 where条件.通配符_%. ...

  2. Spring Boot中使用Swagger CodeGen生成REST client

    文章目录 什么是Open API规范定义文件呢? 生成Rest Client 在Spring Boot中使用 API Client 配置 使用Maven plugin 在线生成API Spring B ...

  3. MAC攻击及缺陷

    MAC攻击及缺陷 MAC有好几种实现方式 对MAC的攻击 重放攻击 重放攻击的防护 密钥推测攻击 MAC算法的缺陷 第三方证明 防止否认 前面我们在讲HMAC的时候简单讲过了什么是MAC消息认证码. ...

  4. P5522 [yLOI2019] 棠梨煎雪

    updata on 2020.3.19 今天把博客从洛谷往博客园搬,图炸了 其实早就发现了,懒得管 那图其实就是一个用dev自带的调试功能调试时,RE了的报错 当时觉得很奇怪看不出是啥,现在再看已经觉 ...

  5. P4370 [Code+#4]组合数问题2

    题目要求当\(0\leq a\leq b\leq n\)时,\(k\)个\(\tbinom{b}{a}\)的和的最大值 观察杨辉三角形,可以发现,最大的\(\tbinom{b}{a}\),为\(\tb ...

  6. RF(控制台及日志输出中文乱码)

    1.查看 ride 版本,我这里是 RIDE 1.7.4.1 running on Python 3.6.0. 2.修改文件 D:\python3.6\Lib\site-packages\roboti ...

  7. 一个简单的wed服务器SHTTPD(9)————main函数文件,Makefile,头文件

    主函数: #include "lcw_shttpd.h" //初始化时服务器的默认配置 extern struct conf_opts conf_para= { "/us ...

  8. 【Hexo】使用Hexo+github pages+travis ci 实现自动化部署

    目录 一.说明 二.成品展示 三.前期准备 本地安装 node.js 本地安装 git github 账号 创建仓库 travis ci 账号 四.安装 Hexo 五.使用 hexo 搭建博客 六.部 ...

  9. Linux中的程序和进程,PID和PPID

    环境:Vmware Workstation:CentOS-6.4-x86_64 程序和进程: 1.程序:程序是静止的,程序就是磁盘上的一个文件. 2.进程:进程是一个正在执行的程序的实例. 3.进程是 ...

  10. E. Sasha and Array 矩阵快速幂 + 线段树

    E. Sasha and Array 这个题目没有特别难,需要自己仔细想想,一开始我想了一个方法,不对,而且还很复杂,然后lj提示了我一下说矩阵乘,然后再仔细想想就知道怎么写了. 这个就是直接把矩阵放 ...