1、读取csv

import pandas as pd
df = pd.read_csv('路径/py.csv')

2、取行号

index_num = df.index

举个例子:

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8')
index_num = df.index
print(index_num)

3、取出行

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 获取行数
# index_num = df.index
# print(index_num) # 取出某一行
# row_data_1 = df.iloc[0]
# row_data_2 = df.iloc[[0]] # 取出连续的行
# row_data_3 = df.iloc[0:2]
# row_data_4 = df[0:2] # 取出不连续的行
# row_data_5 = df.iloc[[0,2]] # print(row_data_5)

只取一行

可以使用df.iloc[行号],得到的是series

也可以使用df.iloc[[行号]],得到的是dataframe

row_data_1 = df.iloc[0] # pandas series
row_data_2 = df.iloc[[0]] # dataframe

loc是显式的索引,默认第一行的行号为1,行号从1计数

iloc是隐式的索引,默认第一行的行号为0,行号从0计数

row_data_1

row_data_2

取连续的几行

可以用df.iloc[行号:行号],也可以用df[行号:行号],得到的都是dataframe

row_data_3 = df.iloc[0:2]
row_data_3 = df[0:2]

row_data_3

row_data_4

取出不连续的几行

使用df.iloc[[行号,行号]],特别注意是两个方括号,中间是逗号,得到的是dataframe

row_data_5 = df.iloc[[0,2]]

row_data_5

4、取出列

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 只取一列
# col_data_1 = df['a'] # 单独一列是个series
# col_data_2 = df.loc[:,'a'] # 同上,但比较复杂,一般不用
# col_data_3 = df.iloc[:,0] # 同上,可以在不知道列名的时候用
#
# col_data_4 = df[['a']] # 单独一列是个df
# col_data_5 = df.loc[:,['a']] # 同上,但比较复杂,一般不用
# col_data_6 = df.iloc[:,[0]] # 同上,可以在不知道列名的时候用
# print(col_data_4) # 获取指定的几列
# cols_data_1 = df[['a','b']] # DataFrame, 指定某几列,直接用列名
# cols_data_2 = df.loc[:,['a','b']] # 同上,但比较复杂,一般不用
# cols_data_3 = df.iloc[:,[0,2]] # 同上,可以在不知道列名的时候用
# print(cols_data_1) # 获取指定的连续列
# cols_data_4 = df.loc[:,'a':'d'] # 指定连续列,用列名
# cols_data_5 = df.iloc[:,0:4] # 指定连续列,用数字
# print(cols_data_4)

只取一列

col_data_1 = df['a']    # 单独一列是个series
col_data_2 = df.loc[:,'a'] # 同上,但比较复杂,一般不用
col_data_3 = df.iloc[:,0] # 同上,可以在不知道列名的时候用

以上三种均为只取一列的操作,并且是等效的,获取的都是series类型

下面三种也是等效的,但是获取的是dataframe类型

col_data_4 = df[['a']]  # 单独一列是个df
col_data_5 = df.loc[:,['a']] # 同上,但比较复杂,一般不用
col_data_6 = df.iloc[:,[0]] # 同上,可以在不知道列名的时候用

取指定的某几列

cols_data_1 = df[['a','b']]    # DataFrame, 指定某几列,直接用列名
cols_data_2 = df.loc[:,['a','b']] # 同上,但比较复杂,一般不用
cols_data_3 = df.iloc[:,[0,2]] # 同上,可以在不知道列名的时候用

获取指定的连续几列

cols_data_4 = df.loc[:,'a':'d']  # 指定连续列,用列名
cols_data_5 = df.iloc[:,0:4] # 指定连续列,用数字

5、取指定行和列

import pandas as pd

df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8',header=None)
# print(type(df))
df.columns = ['a','b','c','d','e','f'] # 获取指定行列
# 第一种,列索引用数字表示
# data_1 = df.iloc[[1,3],[0]]
# data_2 = df.iloc[[1,3],0]
# data_3 = df.iloc[[1,3],1:3]
# data_4 = df.iloc[[1,3],[1,3]]
# print(data_4)
# 第二种,列索引直接引用列名
# data_5 = df.loc[1,['a','d']]
# data_6 = df.loc[[1],['a','d']]
# data_7 = df.loc[[1,3],'a':'d']
# data_8 = df.loc[[1,3],['a','d']]
# print(data_8)

列索引用数字表示

第一种情况是列索引用数字表示, df.iloc[行索引表达,列索引表达],规则跟上面行索引一模一样。

data_1 = df.iloc[[1,3],[0]]

data_2 = df.iloc[[1,3],0]  # series

data_3 = df.iloc[[1,3],1:3]

data_4 = df.iloc[[1,3],[1,3]]

列索引直接引列名

第二种情况是列索引直接引列名(行索引不存在这个问题,因为pandas没有所谓'行名'),就要用df.loc[行索引,列名索引。

data_5 = df.loc[1,['a','d']] # series

data_6 = df.loc[[1],['a','d']]

data_7 = df.loc[[1,3],'a':'d']

data_8 = df.loc[[1,3],['a','d']]

使用pandas库实现csv行和列的获取的更多相关文章

  1. POI教程之第二讲:创建一个时间格式的单元格,处理不同内容格式的单元格,遍历工作簿的行和列并获取单元格内容,文本提取

    第二讲 1.创建一个时间格式的单元格 Workbook wb=new HSSFWorkbook(); // 定义一个新的工作簿 Sheet sheet=wb.createSheet("第一个 ...

  2. python的pandas库读取csv

    首先建立test.csv原始数据,内容如下 时间,地点 一月,北京 二月,上海 三月,广东 四月,深圳 五月,河南 六月,郑州 七月,新密 八月,大连 九月,盘锦 十月,沈阳 十一月,武汉 十二月,南 ...

  3. 用pandas库对csv文件中的文本数据进行分析处理

    #数据分析 import pandas import csv old_path = r'd:\2000W\200W-400W.csv' f = open(old_path,'r',encoding=' ...

  4. Python之文件读写(csv文件,CSV库,Pandas库)

    前言 一.Python文件读取 二.读取CSV文件 一.Python文件读取 1. open函数是内置函数之with操作 - 关于路径设置的问题斜杠设置成D:\\文件夹\\文件或是D:/文件夹/文件 ...

  5. Python之使用Pandas库实现MySQL数据库的读写

      本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写.首先我们需要了解点ORM方面的知识. ORM技术   对象关系映射技术,即ORM(Object-Relational ...

  6. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  7. Pandas库常用函数和操作

    1. DataFrame 处理缺失值  dropna() df2.dropna(axis=0, how='any', subset=[u'ToC'], inplace=True) 把在ToC列有缺失值 ...

  8. python pandas库——pivot使用心得

    python pandas库——pivot使用心得 2017年12月14日 17:07:06 阅读数:364 最近在做基于python的数据分析工作,引用第三方数据分析库——pandas(versio ...

  9. 建议42:使用pandas处理大型CSV文件

    # -*- coding:utf-8 -*- ''' CSV 常用API 1)reader(csvfile[, dialect='excel'][, fmtparam]),主要用于CSV 文件的读取, ...

随机推荐

  1. (转)对 Linux 新手非常有用的 20 个命令

    你打算从Windows换到Linux上来,还是你刚好换到Linux上来?哎哟!!!我说什么呢,是什么原因你就出现在我的世界里了.从我以往的经验来说,当我刚使用Linux,命令,终端啊什么的,吓了我一跳 ...

  2. fail-safe fail-fast知多少

    目录 简介 Fail-fast Iterator Fail-fast 的原理 Fail-safe Iterator 总结 fail-safe fail-fast知多少 简介 我们在使用集合类的时候,通 ...

  3. 设置linux中Tab键的宽度(可永久设置)

    一.仅设置当前用户的Tab键宽度输入命令:vim ~/.vimrc然后:set tabstop=6   //将Tab键的宽度设置为6保存:ctrl+z+z(或:wq!)OK!二.设置所有用户的Tab键 ...

  4. dotnetcore配置框架简介

    一.前言 配置的本质就是字符串的键值对,微软的一系列接口其实就是对这些键值对字符串的抽象. 二.基本类型 2.1.Nuget包 Microsoft.Extensions.Configuration.A ...

  5. Springboot中,Tomcat启动war包的流程

    将一个SpringBoot项目,打成war包 <!-- 1. 修改POM依赖 --> <dependency> <groupId>org.springframewo ...

  6. HDU1873 看病要排队【模拟+优先队列】

    看病要排队 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. The Preliminary Contest for ICPC Asia Xuzhou 2019 徐州网络赛 K题 center

    You are given a point set with nn points on the 2D-plane, your task is to find the smallest number o ...

  8. codeforce 270C Magical Boxes

    C. Magical Boxes Emuskald is a well-known illusionist. One of his trademark tricks involves a set of ...

  9. 清北学堂—2020.3NOIP数学精讲营—Day 1 morning 重点笔记

    qbxt Day 1 morning 重点笔记 --2020.3.8 济南 主讲:钟皓曦 1 正数%负数==正数 负数%正数==负数 负数%负数==负数 a%b的答案的符号取决于a的符号. 2 快速幂 ...

  10. python进程/线程/协程

    一 背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所 ...