[题解] LuoguP4389 付公主的背包
这个题太神辣~
暴力背包就能获得\(30\)分的好成绩......
\(60\)分不知道咋搞.....
所以直接看\(100\)分吧\(QwQ\)
用一点生成函数的套路,对于一个体积为\(v\)的物品,我们构造一个序列\(f_n = [v \mid n]\ (n \ge 0)\)
其生成函数\(F(x) = \sum\limits_{i=0}^{\infty} [v \mid i]x^i = \sum\limits_{i=0}^{\infty} x^{vi} = \frac{1}{1-x^v}\)
那么答案就是这\(n\)个\(F\)的乘积。
考虑怎么把这个东西乘起来,大力乘是\(O(nm \log m)\),其封闭形式\(\frac{1}{1-x^v}\)好像也没有什么好优化的......
一个套路的想法是把每个\(F\),先\(\ln\)一下,然后再加起来,最后\(\exp\)回去。
问题变成了怎么求\(\ln F(x)\),不放设\(\ln F(x) = G(x)\)。
套路的两边对\(x\)求导
\]
注意到\(F(x) = \frac{1}{1-x^v}\)
(1 - x^v)\sum\limits_{i=0}^{\infty} vix^{vi-1} &= G'(x) \\
\sum\limits_{i=0}^{\infty} vix^{vi-1} - \sum\limits_{i=0}^{\infty} vix^{v(i+1)-1} &= G'(x)
\end{aligned}
\]
注意到\(i=0\)时候两个\(\Sigma\)都是\(0\),所以
\sum\limits_{i=1}^{\infty} vix^{vi-1} - \sum\limits_{i=1}^{\infty} v(i-1) x^{vi-1} &= G'(x) \\
\sum\limits_{i=1}^{\infty} vx^{vi-1} &= G'(x)
\end{aligned}
\]
两边同时积分回去
\]
可以对每个\(v\),\(O(\frac{m}{v})\)的搞出\(G\),然后\(\exp\)回去就好了。
\(v\)有重复的话开个桶可以保证复杂度,预处理逆元能快一点。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N=3e5+10,P=998244353,gen=3,igen=(P+1)/gen;
int add(int x,int y){return x+y>=P?x+y-P:x+y;}
int sub(int x,int y){return x-y<0?x-y+P:x-y;}
int fpow(int x,int y){
int ret=1; for(x%=P;y;y>>=1,x=1ll*x*x%P)
if(y&1) ret=1ll*x*ret%P;
return ret;
}
namespace Poly{
int rev[N];
void init(int n){
for(int i=0;i<n;i++)
rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);
}
void ntt(int *f,int n,int flg){
for(int i=0;i<n;i++)
if(rev[i]<i) swap(f[i],f[rev[i]]);
for(int len=2,k=1;len<=n;len<<=1,k<<=1){
int wn=fpow(flg==1?gen:igen,(P-1)/len);
for(int i=0;i<n;i+=len)
for(int j=i,w=1;j<i+k;j++,w=1ll*w*wn%P){
int tmp=1ll*w*f[j+k]%P;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
if(flg==-1){
int inv=fpow(n,P-2);
for(int i=0;i<n;i++) f[i]=1ll*f[i]*inv%P;
}
}
#define glim(n) int limit=1;while(limit<=(n))limit<<=1;init(limit)
void getinv(int *f,int n,int *G){
if(n==1){G[0]=fpow(f[0],P-2);return;}
getinv(f,(n+1)>>1,G); glim(2*n);
static int F[N];
for(int i=0;i<limit;i++)
i>=n?F[i]=G[i]=0:F[i]=f[i],G[i]=G[i];
ntt(F,limit,1),ntt(G,limit,1);
for(int i=0;i<limit;i++) G[i]=1ll*G[i]*sub(2,1ll*F[i]*G[i]%P)%P;
ntt(G,limit,-1);
for(int i=n;i<limit;i++) G[i]=0;
}
void dao(int *f,int n,int *G){
static int F[N]; for(int i=0;i<=n;i++) F[i]=f[i];
for(int i=1;i<=n;i++) G[i-1]=1ll*F[i]*i%P; G[n]=0;
}
void jifen(int *f,int n,int *G){
static int F[N]; for(int i=0;i<=n;i++) F[i]=f[i];
for(int i=0;i<=n;i++) G[i+1]=1ll*F[i]*fpow(i+1,P-2)%P; G[0]=0;
}
void getln(int *f,int n,int *G){
static int F[N],iF[N]; for(int i=0;i<n;i++) F[i]=f[i];
getinv(F,n,iF),dao(F,n-1,F); glim(n*2);
for(int i=0;i<limit;i++) F[i]=i>=n?0:F[i],iF[i]=i>=n?0:iF[i];
ntt(F,limit,1),ntt(iF,limit,1);
for(int i=0;i<limit;i++) G[i]=1ll*F[i]*iF[i]%P;
ntt(G,limit,-1),jifen(G,n-1,G);
for(int i=n;i<limit;i++) G[i]=0;
}
void getexp(int *f,int n,int *G){
if(n==1){G[0]=1;return;}
getexp(f,(n+1)>>1,G); glim(n*2);
static int F[N],lnG[N];
for(int i=0;i<limit;i++) i>=n?F[i]=G[i]=0:F[i]=f[i],G[i]=G[i];
getln(G,n,lnG),ntt(F,limit,1),ntt(G,limit,1),ntt(lnG,limit,1);
for(int i=0;i<limit;i++) G[i]=1ll*G[i]*add(sub(1,lnG[i]),F[i])%P;
ntt(G,limit,-1);
for(int i=n;i<limit;i++) G[i]=0;
}
}
int F[N],ans[N],inv[N],cnt[N];
int main(){
int n,m; scanf("%d%d",&n,&m);
inv[1]=1; for(int i=2;i<=m;i++)
inv[i]=1ll*(P-P/i)*inv[P%i]%P;
for(int _=1;_<=n;_++){
int v;scanf("%d",&v);
if(v<=m) cnt[v]=add(cnt[v],1);
}
for(int v=1;v<=m;v++) if(cnt[v])
for(int i=1;i*v<=m;i++) F[i*v]=add(F[i*v],1ll*cnt[v]*inv[i]%P);
Poly::getexp(F,m+1,ans);
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}
[题解] LuoguP4389 付公主的背包的更多相关文章
- LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
- luoguP4389 付公主的背包
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...
- luoguP4389 付公主的背包 多项式exp
%%%dkw 话说这是个论文题来着... 考虑生成函数\(OGF\) 对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个 那么,其生成函数为\(x^0 + x^{v} + x^{ ...
- 洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
- 洛谷 P4389: 付公主的背包
题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...
- 洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
- luogu P4389 付公主的背包
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...
- luogu4389 付公主的背包
题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题 ...
- P3489 付公主的背包
题意:n<=1e5,m<=1e5,跑n个物品1到m容量的完全背包. 考虑暴力的做法就是把一些1/(1+x^a)的多项式乘起来即可. 考虑优化,取一下ln,转化为加法,然后exp回去就好了.
随机推荐
- docker-compose 快速部署Prometheus,监控docker 容器, 宿主机,ceph -- cluster集群
话不多说上菜: 现在环境是这样: ceph 4台: 192.168.100.21 ceph-node1 192.168.100.22 ceph-node2 192.168.100.23 ceph ...
- uboot的环境变量
https://www.cnblogs.com/biaohc/p/6398515.html uboot 环境变量实现原理: 首先我们先要搞清楚uboot中环境变量的作用,uboot中环境变量的作用就是 ...
- Java中数组的创建
Java中数组的使用 1.普通数组变量的定义: //数组 //1.数组是Java中很重要的一部分,今天对数组进行了大致的了解,Java中的数组和C中数组还是有一定的区别的 //以下是总结的几种方法 p ...
- JAVA笔记01 变量的取名
第2章 有意义的命名2.1 介绍2.2 名副其实 变量名太随意,haha.list1.ok 这些都没啥意义2.3 避免误导 包含List等关键字.字母o与数字0等2.4 做有意义的区分 反面教材,变量 ...
- Linux服务器命令大全
快捷提示键: table 查看文件夹: ls , ls –all ,ls –l,ll 进入某个文件夹: cd usr/local 回到root 目录 : cd /root/ 回到根目录:cd / 回 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-file
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- Eclipse新建Maven中创建src文件夹报The folder is already a source folder错误解决办法
问题: 解决办法:右击项目->Build Path->Configure Build Path选择(missing)文件夹remove,然后重新New Source Folder
- Day 30:HTML和CSS在Java项目中常用语法
framSet例子,其中的页面链接地址视情况而定,应为我还不知怎么弄当前文件下呢,例子主要在说明该标签如何使用 <!DOCTYPE html PUBLIC "-//W3C//DTD X ...
- C++学习记录——(queue的清空)
c++自带的queue并没有clear这个方法:所以只能自己写了. 一共三种(其实我决得就是两种): 第一种: 直接赋值 queue<int> MyQue; /* …… */ MyQue ...
- HYSBZ - 1588 营业额统计 (伸展树)
题意:营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营 ...