本课主题

  • Task执行内幕与结果处理解密

引言

这一章我们主要关心的是 Task 是怎样被计算的以及结果是怎么被处理的

  • 了解 Task 是怎样被计算的以及结果是怎么被处理的

Task 执行原理流程图

[下图是Task执行原理流程图]

  1. Executor 会通过 TaskRunner 在 ThreadPool 来运行具体的 Task,TaskRunner 内部会做一些准备的工作,例如反序例化 Task,然后通过网络获取需要的文件、Jar等
  2. 运行 Thread 的 run 方法,导致 Task 的 runTask 被调用来执行具体的业务逻辑处理
  3. 在Task 的 runTask内部会调用 RDD 的 iterator( ) 方法,该方法就是我们针对当前 Task 所对应的 Partition 进行计算的关键之所在,在处理内部会迭代 Partition 的元素并交给我们先定义的 Function 进行处理
    • ShuffleMapTask: ShuffleMapTask 在计算具体的 Partition 之后实际上会通过 ShuffleManager 获得的 ShuffleWriter 把当前 Task 计算的数据具体 ShuffleManger 的实现来写入到具体的文件。操作完成后会把 MapStatus 发送给 DAGScheduler; (把 MapStatus 汇报给 MapOutputTracker)
    • ResultTask: 根据前面 Stage 的执行结果进行 Shuffle 产生整个 Job 最后的结果;(MapOutputTracker 會把 ShuffleMapTask 執行結果交給 ResultTask)

Task 执行内幕源码解密

  1. 当 Driver 中的 CoarseGrainedSchedulerBackend 给 CoarseGrainedExecutorBackend 发送 LaunchTask 之后,CoarseGrainedExecutorBackend 在收到 LaunchTask 消息后,首先会判断一下有没有 Executor,没有的话直接退出和打印出提示信息,有的话会反序例化 TaskDescription,在执行具体的业务逻辑前会进行3次反序例化,第一个是 taskDescription,第二个是任务 Task 本身进行反序例化,还有的是RDD 的反序例化。
    [下图是 CoarseGrainedExecutorBackend.scala 接收 LaunchTask case class 信息后的逻辑]

    然后再发 LaunchTask 消息,里面会创建一个 TaskRunner,然后把它交给一个 runningTasks 的数据结构中,然后交给线程池去执行 Thread Pool。
    [下图是 Executor.scala 中的 launchTask 方法]
  2. Executor 会通过 TaskRunner 在ThreadPool 来运行具体的 Task,在 TaskRunner 的 run( )方法中首先会通过调用 stateUpdate 给 Driver 发信息汇报自己的状态,说明自己的RUNNING 状态。
    [下图是 Executor.scala 中的 TaskRunner 类]

    [下图是 Executor.scala 中的 run 方法]

    [下图是 ExecutorBackend.scala 中的 statusUpdate 方法]
  3. TaskRunner 内部会做一些准备的工作,例如反序例化 Task 的依赖,这个反序例化得出一个 Tuple,然后通过网络获取需要的文件、Jar等;
    [下图是在 Executor.scala 中 run 方法内部具体的代码实现]
  4. 在同一个 Stage 的内部需要共享资源。在同一个 Stage 中我们 ExecutorBackend 会有很多并发线程,此时它们所依赖的 Jar 跟文件肯定是一样的,每一个 TaskRunner 运行的时候都会运行在线程中,这个方法会被多个线程去调,所以线程需要一个加锁,而这个方法是有全区中的。这主要是要防止资源竞争。下载一切这个 Task 需要的 Jar 文件,我们通 Executor 在不同的线程中共享全区资源。
    [下图是 Executor.scala 中的 updateDependencies 方法]

  5. 在 Task 的 runTask 内部会调用 RDD 的 iterator( ) 方法,该方法就是我们针对当前 Task 所对应的 Partition 进行计算的关键之所在,在处理内部会迭代 Partition 的元素并交给我们先定义的 Function 进行处理对于 ShuffleMapTask,首先要对 RDD 以及其他的依赖关系进行反序例化:
    [下图是 Executor.scala 中 run 方法内部具体的代码实现]

    [下图是 Task.scala 中的 run 方法]

    因为 Task 是一个 abstract class,它的子类是 ShuffleMapTask 或者是 ResultsMapTask,是乎我们当前的 Task 是那个类型。
    [下图是 ShuffleMapTask.scala 中的 runTask 方法]

    [下图是 RDD.scala 中的 iterator 方法]

    [下图是 RDD.scala 中的 computeOrReadCheckpoint 方法]

    最终计算会调用 RDD 的 compute 的方法具体计算的时候有具体的 RDD,例如 MapPartitionsRDD.compute,其中的 f 就是在当前 Stage 计算具体 Partition 的业务逻辑代码。
    [下图是 RDD.scala 中的 compute 方法]

    [下图是 MapPartitionsRDD.scala 中的 compute 方法]
  6. 调用反序例化后的 Task.run 方法来执行任务并获得执行结果,其中 Task 的 run 方法调用的时候会导致 Task 的抽象方法 runTask 的调用
    [下图是 Executor.scala 中 run 方法内部具体的代码实现]

  7. 把执行结果序例化
    [下图是 Executor.scala 中 run 方法内部具体的代码实现]
  8. 运行 Thread 的 run 方法,导致 Task 的 runTask 被调用来执行具体的业务逻辑处理
  9. 对于 ResultTask
    [下图是 ResultsMapTask.scala 中的 runTask 方法]
  10. 在 Spark 中 AkaFrameSize 是 128MB,所以可以扩播非常大的任务,而任务
  11. 并根据大小判断不同的结果传回给 Driver 的方式
  12. CoraseGrainedExectorBackend 给 DriverEndpoint 发送 StatusUpdate 来传执行结果
    [下图是 Executor.scala 中 run 方法内部具体的代码实现]

    [下图是 CoraseGrainedExectorBackend.scala 中 statusUpdate 方法]

    [下图是 DriveEndPoint.scala 中 receive 方法]
  13. DriverEndpoint 会把执行结果传给 TaskSchedulerImpl 处理,然后交给 TaskResultGetter 去分别处理执行成功和失败时候的不同情况,然后告X DAGScheduler 任务处理结的情况重
    [下图是 TaskSchedulerImpl.scala 中 statusUpdate 方法]

    [下图是 TaskResultsGetter.scala 中 handleSuccessfulTask 方法]

    [下图是 TaskSchedulerImpl.scala 中 handleSuccessfulTask 方法]

    [下图是 TaskSetManager.scala 中 handleSuccessfulTask 方法]

參考資料

资料来源来至 DT大数据梦工厂 大数据传奇行动 第37课:Task执行内幕与结果处理解密

Spark源码图片取自于 Spark 1.6.0版本

[Spark内核] 第37课:Task执行内幕与结果处理解密的更多相关文章

  1. Task执行内幕与结果处理解密

    本课主题 Task执行内幕与结果处理解密 引言 这一章我们主要关心的是 Task 是怎样被计算的以及结果是怎么被处理的 了解 Task 是怎样被计算的以及结果是怎么被处理的 Task 执行原理流程图 ...

  2. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  3. [Spark内核] 第33课:Spark Executor内幕彻底解密:Executor工作原理图、ExecutorBackend注册源码解密、Executor实例化内幕、Executor具体工作内幕

    本課主題 Spark Executor 工作原理图 ExecutorBackend 注册源码鉴赏和 Executor 实例化内幕 Executor 具体是如何工作的 [引言部份:你希望读者看完这篇博客 ...

  4. [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密

    本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...

  5. [Spark内核] 第35课:打通 Spark 系统运行内幕机制循环流程

    本课主题 打通 Spark 系统运行内幕机制循环流程 引言 通过 DAGScheduelr 面向整个 Job,然后划分成不同的 Stage,Stage 是從后往前划分的,执行的时候是從前往后执行的,每 ...

  6. [Spark内核] 第31课:Spark资源调度分配内幕天机彻底解密:Driver在Cluster模式下的启动、两种不同的资源调度方式源码彻底解析、资源调度内幕总结

    本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.Ta ...

  7. [Spark内核] 第28课:Spark天堂之门解密

    本課主題 什么是 Spark 的天堂之门 Spark 天堂之门到底在那里 Spark 天堂之门源码鉴赏 引言 我说的 Spark 天堂之门就是SparkContext,这篇文章会从 SparkCont ...

  8. [Spark内核] 第40课:CacheManager彻底解密:CacheManager运行原理流程图和源码详解

    本课主题 CacheManager 运行原理图 CacheManager 源码解析 CacheManager 运行原理图 [下图是CacheManager的运行原理图] 首先 RDD 是通过 iter ...

  9. [Spark内核] 第32课:Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等

    本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者 ...

随机推荐

  1. Docker笔记四:Elasticsearch实例部署

    在运行或启动elasticsearch容器前,先在宿主机上执行 sysctl -w vm.max_map_count=262144: 解决" max virtual memory areas ...

  2. django同时查询两张表的数据,合并检索对象返回

    原始需求: 1.一篇文章内容分N个版块,每篇文章的版块数量不同. 2.有个文章搜索功能,需要同时搜索标题和内容. 实现思路: 1.由于每篇文章的内容版块数量不同,因此将每个文章的标题和内容分开存入2张 ...

  3. DotNetCore跨平台~xUnit生成xml报告

    在CI/CD流行至极的今天,你的项目没有自动化测试绝对是不可以接受的,在进行自动化部署和持续集成时,我们的dotnet core项目也是可以实现自动化的,之前说过gitlab,jenkins对持续集成 ...

  4. EasyUI实现异步载入tree(整合Struts2)

    首先jsp页面有一ul用于展现Tree <ul id="mytree"></ul> 载入Tree <script type="text/ja ...

  5. 《Effective Modern C++》翻译--简单介绍

    北京时间2016年1月9日10:31:06.正式開始翻译.水平有限,各位看官若有觉得不妥之处,请批评指正. 之前已经有人翻译了前几个条目,有些借鉴出处:http://www.cnblogs.com/m ...

  6. 第五章——定时器Timer序言

    定时器很重要. 上家公司有用的,是用来做定期数据同步的. 以前老同学有用到,曾经就定时器讨论过一次,还给过一次他我关于spring-task的总结. 但是并没有意识到定时器与多线程的关系,或者说,上一 ...

  7. 让PIP源使用国内镜像,提升下载速度和安装成功率。

      对于Python开发用户来讲,PIP安装软件包是家常便饭.但国外的源下载速度实在太慢,浪费时间.而且经常出现下载后安装出错问题.所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安 ...

  8. cookies和re

    参考:http://cuiqingcai.com/968.html   http://cuiqingcai.com/977.html

  9. 【CSS3】渐变

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. JavaWeb框架_Struts2_(八)----->Struts2的国际化

    这一篇博文拖了蛮久了,现在先把它完成,结束struts2这个版块,当然这只是最基础的部分,做项目还需要更深的理解.下一个web后端的版块准备做Spring框架的学习-嗯,加油! 1. Struts2的 ...