3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1728  Solved: 513

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。

Source

【分析】

  一开始打莫队+树状数组,好尴尬80s T了卡评测。。

  然后因为树状数组logn修改 logn查询。

  这里分块就比较优越的(其实跟我之前看的块状链表没什么区别吧?),分块做的话是单点修改O(1),询问$\sqrt n$的。

  对于莫队这种单点改来改去的题目就很好了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 100010
#define Maxm 1000010 int mymin(int x,int y) {return x<y?x:y;} int s[Maxn],sm[Maxn],bl[Maxn];
int sq,n,m; struct node {int x,y,a,b,id,ans;}t[Maxm];
bool cmp(node x,node y) {return (x.x/sq==y.x/sq)?(x.y<y.y):(x.x<y.x);}
bool cmp2(node x,node y) {return x.id<y.id;} int c[Maxn],rt[Maxn]; int query(int x,int y)
{
int L=bl[x],R=bl[y];
int ans=;
for(int i=L+;i<R;i++) ans+=c[i];
if(L==R)
{
for(int i=x;i<=y;i++) ans+=(sm[i]>=?:);
}
else
{
for(int i=x;i<=rt[L];i++) ans+=(sm[i]>=?:);
for(int i=rt[R-]+;i<=y;i++) ans+=(sm[i]>=?:);
}
return ans;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&s[i]);
for(int i=;i<=n;i++) sm[i]=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&t[i].x,&t[i].y,&t[i].a,&t[i].b);
t[i].id=i;
}
sq=(int)ceil(sqrt((double)n));
sort(t+,t++m,cmp);
for(int i=;i<=n;i++) bl[i]=i/sq+;
for(int i=;i<=sq;i++) rt[i]=mymin(sq*i-,n);
for(int i=;i<=sq;i++) c[i]=;
int l=,r=;
for(int i=;i<=m;i++)
{
while(r<t[i].y)
{
if(sm[s[r+]]==) c[bl[s[r+]]]++;
sm[s[r+]]++;
r++;
}
while(l>t[i].x)
{
if(sm[s[l-]]==) c[bl[s[l-]]]++;
sm[s[l-]]++;
l--;
}
while(l<t[i].x)
{
if(sm[s[l]]==) c[bl[s[l]]]--;
sm[s[l]]--;
l++;
}
while(r>t[i].y)
{
if(sm[s[r]]==) c[bl[s[r]]]--;
sm[s[r]]--;
r--;
}
t[i].ans=query(t[i].a,t[i].b);
}
sort(t+,t++m,cmp2);
for(int i=;i<=m;i++) printf("%d\n",t[i].ans);
return ;
}

2017-03-26 15:23:10

【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)的更多相关文章

  1. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  2. bzoj 3809 Gty的二逼妹子序列 —— 莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...

  3. bzoj 3809 Gty的二逼妹子序列——莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...

  4. 【BZOJ3809】Gty的二逼妹子序列 莫队 分块

    题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...

  5. [BZOJ3809]Gty的二逼妹子序列[莫队+分块]

    题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...

  6. [AHOI2013]作业 & Gty的二逼妹子序列 莫队

    ---题面--- 题解: 题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队. 考虑区间[l, r]转移到[l, r + 1],那么对于维护 ...

  7. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  8. 【BZOJ 3809】Gty的二逼妹子序列

    这个莫队如果用线段树来维护的话,复杂度是$O(n\sqrt{n}logn+qlogn)$ 很明显,可以看出来莫队每次$O(1)$的移动因为套上了线段树变成了$O(logn)$,但莫队移动的总数是非常大 ...

  9. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. 使用JavaScript实现使用鼠标画线的效果

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. 机器学习-kNN(1)

    一 kNN算法简介 kNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入 ...

  3. JSTL标签库笔记

    1. 概述 JSTL(Jsp Standard Tag Library)即JSP标准标签库,只能运行在支持JSP1.2↑和Servlet2.3↑规范的容器上. 通常情况下我们在编写JSP页面的时候,在 ...

  4. Verilog笔记.5.同步、异步

    在数字电路中经常有同步synchronism.异步asynchronism的概念.异步指输入信号和时钟无关:同步指输入信号和时钟信号有关,实际上就是输入信号和时钟信号进行了与运算或者与非运算.实际开发 ...

  5. Dijkstra算法(转)

    基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...

  6. [How to] MapReduce on HBase ----- 简单二级索引的实现

    1.简介 MapReduce计算框架是二代hadoop的YARN一部分,能够提供大数据量的平行批处理.MR只提供了基本的计算方法,之所以能够使用在不用的数据格式上包括HBase表上是因为特定格式上的数 ...

  7. python是如何进行内存管理的?

    Python内存管理机制 Python内存管理机制主要包括以下三个方面: 引用计数机制 垃圾回收机制 内存池机制 引用计数 举个例子说明引用是什么: 1 如上为一个简单的赋值语句,1就是对象,a就是引 ...

  8. nginx配置--event模块

    在nginx的配置中,event模块可以进行以下配置: 设置网络连接的序列化. 在Nginx服务器的多进程下,有可能出现惊群(Thundering herd problem)问题,指的是当某一个时刻只 ...

  9. Photon3Unity3D.dll 解析三——OperationRequest、OperationResponse

    OperationRequest 代表Operation操作的Request,包含Code和Parameters OperationCode  Byte类型的值,代表操作,由LiteOpCode定义了 ...

  10. Linux自身安全SElinux

    查看SELinux状态: 1./usr/sbin/sestatus -v      ##如果SELinux status参数为enabled即为开启状态 SELinux status:         ...