3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1728  Solved: 513

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。

Source

【分析】

  一开始打莫队+树状数组,好尴尬80s T了卡评测。。

  然后因为树状数组logn修改 logn查询。

  这里分块就比较优越的(其实跟我之前看的块状链表没什么区别吧?),分块做的话是单点修改O(1),询问$\sqrt n$的。

  对于莫队这种单点改来改去的题目就很好了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 100010
#define Maxm 1000010 int mymin(int x,int y) {return x<y?x:y;} int s[Maxn],sm[Maxn],bl[Maxn];
int sq,n,m; struct node {int x,y,a,b,id,ans;}t[Maxm];
bool cmp(node x,node y) {return (x.x/sq==y.x/sq)?(x.y<y.y):(x.x<y.x);}
bool cmp2(node x,node y) {return x.id<y.id;} int c[Maxn],rt[Maxn]; int query(int x,int y)
{
int L=bl[x],R=bl[y];
int ans=;
for(int i=L+;i<R;i++) ans+=c[i];
if(L==R)
{
for(int i=x;i<=y;i++) ans+=(sm[i]>=?:);
}
else
{
for(int i=x;i<=rt[L];i++) ans+=(sm[i]>=?:);
for(int i=rt[R-]+;i<=y;i++) ans+=(sm[i]>=?:);
}
return ans;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&s[i]);
for(int i=;i<=n;i++) sm[i]=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&t[i].x,&t[i].y,&t[i].a,&t[i].b);
t[i].id=i;
}
sq=(int)ceil(sqrt((double)n));
sort(t+,t++m,cmp);
for(int i=;i<=n;i++) bl[i]=i/sq+;
for(int i=;i<=sq;i++) rt[i]=mymin(sq*i-,n);
for(int i=;i<=sq;i++) c[i]=;
int l=,r=;
for(int i=;i<=m;i++)
{
while(r<t[i].y)
{
if(sm[s[r+]]==) c[bl[s[r+]]]++;
sm[s[r+]]++;
r++;
}
while(l>t[i].x)
{
if(sm[s[l-]]==) c[bl[s[l-]]]++;
sm[s[l-]]++;
l--;
}
while(l<t[i].x)
{
if(sm[s[l]]==) c[bl[s[l]]]--;
sm[s[l]]--;
l++;
}
while(r>t[i].y)
{
if(sm[s[r]]==) c[bl[s[r]]]--;
sm[s[r]]--;
r--;
}
t[i].ans=query(t[i].a,t[i].b);
}
sort(t+,t++m,cmp2);
for(int i=;i<=m;i++) printf("%d\n",t[i].ans);
return ;
}

2017-03-26 15:23:10

【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)的更多相关文章

  1. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  2. bzoj 3809 Gty的二逼妹子序列 —— 莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...

  3. bzoj 3809 Gty的二逼妹子序列——莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...

  4. 【BZOJ3809】Gty的二逼妹子序列 莫队 分块

    题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...

  5. [BZOJ3809]Gty的二逼妹子序列[莫队+分块]

    题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...

  6. [AHOI2013]作业 & Gty的二逼妹子序列 莫队

    ---题面--- 题解: 题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队. 考虑区间[l, r]转移到[l, r + 1],那么对于维护 ...

  7. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  8. 【BZOJ 3809】Gty的二逼妹子序列

    这个莫队如果用线段树来维护的话,复杂度是$O(n\sqrt{n}logn+qlogn)$ 很明显,可以看出来莫队每次$O(1)$的移动因为套上了线段树变成了$O(logn)$,但莫队移动的总数是非常大 ...

  9. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. 解决gridview row 左边序列号 显示不完全的技巧

    放在主程序 入口处, public Form1() { InitializeComponent(); gridView1.IndicatorWidth = ; //<宽度值>官方推荐常用是 ...

  2. Django之Form组件验证

    今天来谈谈Django的Form组件操作 Django中的Form一般有两种功能: ·输入html ·验证用户输入 Form验证流程 ·定义规则(是一个类)    ·前端把数据提交过来 ·匹配规则 · ...

  3. CMDB概述(一)

    浅谈ITIL TIL即IT基础架构库(Information Technology Infrastructure Library, ITIL,信息技术基础架构库)由英国政府部门CCTA(Central ...

  4. TinyOS在ubuntu 14.04下安装教程

    1:打开/etc/apt/sources.list 文件,在文件最底部添加安装源: deb http://tinyos.stanford.edu/tinyos/dists/ubuntu lucid m ...

  5. Wireshark抓包保存文件(图片,视频,音频等)

    1.首先选择一个图片的分组 如图的9801 就是JPG 2.对下面的窗口里面选中JPEG File Interchange Format 右键选择 导出分组字节流 3.文件输入XXX.jpg,注意保存 ...

  6. linux initcall 介绍 (转自http://blog.csdn.net/fenzhikeji/article/details/6860143)

    现在以module_init为例分析initcall在内核中的调用顺序 在头文件init.h中,有如下定义: #define module_init(x)     __initcall(x); 很明显 ...

  7. C基础 time.h 简单思路扩展

    前言 - time 简单需求 时间业务相关代码. 基本属于框架的最底层. 涉及的变动都很小. 以前参与游戏研发时候, 这方面需求不少, 各种被策划花式吊打. 转行开发互联网服务之后很少遇到这方面需求. ...

  8. Java Eclipse 配置

    1.清除多余记录 最近用eclipse打包jar的时候,需要指定一个main函数.需要先运行一下main函数,eclipse的Runnable JAR File Specification 下的Lau ...

  9. ECMAScript 6 Promise 对象

    一.Promise的含义 所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果.从语法上说,Promise是一个对象,从它可以获取异步操作的消息. 1. ...

  10. Ant, JUnit以及Sonar的安装+入门资料

    Ant 感觉是个和Make/Grunt类似的东东,build一个项目用的.安装很容易,跟装JDK类似,就是解压->设环境变量->没了.注意装之前要先确认Java装好了(有点废话). 下载地 ...