P2447 [SDOI2010]外星千足虫

题目描述

公元2089年6月4日,在经历了17年零3个月的漫长旅行后,“格纳格鲁一号”载人火箭返回舱终于安全着陆。此枚火箭由美国国家航空航天局(NASA)研制发射,行经火星、金星、土卫六、木卫二、谷神星、“张衡星”等23颗太阳系星球,并最终在小行星“杰森星”探寻到了地外生命。宇航员在“杰森星”地表岩层下45.70米位置发现一批珍贵的活体生命样本,并将其带回检测。在带回的活体样本中,最吸引人的当属这些来自外星的千足虫了。这些虫子身躯纤长,身体分为若干节。受到触碰时,会将身体卷曲成圆环形,间隔一段时间后才会复原活动。

有趣的还不止如此。研究人员发现,这些虫子的足并不像地球千足虫成对出现、总共偶数条——它们每节身体下方都有着不定数量的足,但足的总数一定是奇数条!虽然从外观难以区分二者,但通过统计足的数目,科学家们就能根据奇偶性判断出千足虫所属的星球。

作为J国派去NASA的秘密间谍,你希望参加这次研究活动以掌握进一步的情报,而NASA选拔的研究人员都是最优秀的科学家。于是NASA局长Charles Bolden出了一道难题来检测你的实力:

现在你面前摆有1…N编号的N只千足虫,你的任务是鉴定每只虫子所属的星球,但不允许亲自去数它们的足。Charles每次会在这N只千足虫中选定若干只放入“昆虫点足机”(the Insect Feet Counter, IFC)中,“点足机”会自动统计出其内所有昆虫足数之和。Charles会将这个和数mod 2的结果反馈给你,同时告诉你一开始放入机器中的是哪几只虫子。他的这种统计操作总共进行M次,而你应当尽早得出鉴定结果。

假如在第K次统计结束后,现有数据就足以确定每只虫子的身份,你就还应将这个K反馈给Charles,此时若K<M,则表明那后M-K次统计并非必须的。

如果根据所有M次统计数据还是无法确定每只虫子身份,你也要跟Charles讲明:就目前数据会存在多个解。

输入输出格式

输入格式:

输入文件insect.in第一行是两个正整数N, M。

接下来M行,按顺序给出Charles这M次使用“点足机”的统计结果。每行包含一个“01”串和一个数字,用一个空格隔开。“01”串按位依次表示每只虫子是否被放入机器:如果第i个字符是“0”则代表编号为i的虫子未被放入,“1”则代表已被放入。后面跟的数字是统计的昆虫足数mod 2的结果。

由于NASA的实验机器精确无误,保证前后数据不会自相矛盾。即给定数据一定有解。

输出格式:

输出文件insect.out在给定数据存在唯一解时有N+1行,第一行输出一个不超过M的正整数K,表明在第K次统计结束后就可以确定唯一解;接下来N行依次回答每只千足虫的身份,若是奇数条足则输出“?y7M#”(火星文),偶数条足输出“Earth”。如果输入数据存在多解,输出“Cannot Determine”。

所有输出均不含引号,输出时请注意大小写。

输入输出样例

输入样例#1: 复制

3 5
011 1
110 1
101 0
111 1
010 1
输出样例#1: 复制

4
Earth
?y7M#
Earth
输入样例#2: 复制

5 7
01100 1
11000 1
10100 0
11100 1
00011 1
00000 0
11111 0
输出样例#2: 复制

Cannot Determine

说明

对于每一个测试点,如果你的输出文件与答案文件完全相同,该测试点得满分;

否则,对于存在唯一解的测试点,如果你正确回答所有千足虫的身份,将得到50%的分数;

其他情况,该测试点得零分。

【数据规模和约定】

对于20%的数据,满足N=M≤20;

对于40%的数据,满足N=M≤500;

对于70%的数据,满足N≤500,M≤1,000;

对于100%的数据,满足N≤1,000,M≤2,000。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define INF 1000000000
using namespace std;
int n,m,ans;
char ch[];
bitset<>a[];
void Gauss(){
int now=;
for(int i=;i<=n;i++){
int j=now+;
while(!a[j][i]&&j<=m)j++;
if(j==m+){ans=-;return;}
else ans=max(ans,j);
now++;
swap(a[j],a[now]);
for(int k=;k<=m;k++)
if(k!=now&&a[k][i])a[k]^=a[now];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%s",ch+);
for(int j=;j<=n;j++)a[i][j]=ch[j]-'';
scanf("%s",ch+);
a[i][n+]=ch[]-'';
}
Gauss();
if(ans==-)puts("Cannot Determine");
else {
printf("%d\n",ans);
for(int i=;i<=n;i++){
if(a[i][n+])puts("?y7M#");
else puts("Earth");
}
}
return ;
}

洛谷 P2447 [SDOI2010]外星千足虫的更多相关文章

  1. 洛谷P2447 [SDOI2010]外星千足虫(异或方程组)

    题意 题目链接 Sol 异或高斯消元的板子题. bitset优化一下,复杂度\(O(\frac{nm}{32})\) 找最优解可以考虑高斯消元的过程,因为异或的特殊性质,每次向下找的时候找到第一个1然 ...

  2. [洛谷P2447][SDOI2010]外星千足虫

    题目大意:有$n$个数,每个数为$0$或$1$,给你其中一些关系,一个关系形如其中几个数的异或和是多少,问最少知道前几个关系就可以得出每个数是什么,并输出每个数 题解:异或方程组,和高斯消元差不多,就 ...

  3. 洛咕 P2447 [SDOI2010]外星千足虫

    一开始以为是异或高斯消元,实际上是简单线性基. 直接往线性基里插入,直到线性基满了就解出来了. // luogu-judger-enable-o2 #include<bits/stdc++.h& ...

  4. 【洛谷P2447】外星千足虫

    题目大意:给定一个 M 个含 N 个未知数的异或方程组,保证有解,若存在唯一解,给出至少需要几个方程才能得出唯一解,若不存在,直接输出不存在. 题解:异或方程组也满足类似初等行变换的操作,只不过所有的 ...

  5. P2447 [SDOI2010]外星千足虫 (高斯消元)

    题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...

  6. 【P2447 [SDOI2010]外星千足虫】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2447 dalao们都说简单...解异或方程组 可我不是dalao qwq #include <algo ...

  7. P2447 [SDOI2010]外星千足虫

    怎么说呢? 因为是在mod 2 意义下的吗(一般是遇到二就可能是位运行算或二分图) 就可以利用异或计算. 因为奇数和偶数在二进制上就用判断最后一位就可以了 然后因为异或符合交换律和结合律 直接消元就可 ...

  8. 【题解】Luogu P2447 [SDOI2010]外星千足虫

    原题传送门 根据题意,题目给的每个操作就相当于异或上选中的那几只虫子的足数(mod 2)等于0/1 这是一个异或方程组,珂以用高斯消元解出每个虫子的足数(mod 2).所需最小次数或判断有多解 但是看 ...

  9. Luogu P2447 [SDOI2010]外星千足虫 高斯消元

    链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...

随机推荐

  1. 网页效果分析 VCD分解

    VCD分解分为三部分: 1. view 视觉                   HTML + CSS 基本界面模板 2. controller 控制            javascript  内 ...

  2. java代码继承super

    总结:多态 :. 当重写父类的方法的时,子类对象名可以调用父类的方法,以及不带参的构造方法 package com.addd; public class rr { int a, b; String c ...

  3. java代码。。重温JPassword,JLabel,JPanel

    package com.kk; //JPasswordField类的使用 import java.awt.Color; import java.awt.FlowLayout; import javax ...

  4. Jmeter 分布式压测及可能出现的问题;

    (注:master与slave机的jmeter版本必须保持一致) master机器上的准备工作如下: 1.先准备一个调试通过的下单接口: 2.找到jmeter的bin目录下的jmeter.proper ...

  5. 10-23C#基础--结构体

    结构体: 1.定义:封装小型相关变量组,里面可以放一系列的变量: 就是一个变量组,将一组变量放在一起,结构体一般定义在Main函数上面,位于Class下面,作为一个类:一般情况Struct定义在Mai ...

  6. 虚拟机VMware的安装以及指南

    VMware是一个非常强大的虚拟软件,它的更新速度非常的快,随着软件的更新速度的加快,它的大小会越来越大,但是新的版本大多数会是给企业使用的,对于我们而言,不那么的需要,所以,我们只需要使用一些差不多 ...

  7. 每天一道算法题(11)——栈的push、pop 序列

    题目:输入两个整数序列.其中一个序列表示栈的push 顺序,判断另一个序列有没有可能是对应的pop 顺序.为了简单起见,我们假设push 序列的任意两个整数都是不相等的. 例如:输入的push 序列是 ...

  8. solr增量数据配置说明

    转帖地址:http://www.blogjava.net/conans/articles/379546.html 以下资料整理自网络,觉的有必要合并在一起,这样方便查看.主要分为两部分,第一部分是对& ...

  9. [hdu1251]统计难题(trie模板题)

    题意:返回字典中所有以测试串为前缀的字符串总数. 解题关键:trie模板题,由AC自动机的板子稍加改造而来. #include<cstdio> #include<cstring> ...

  10. Codeforces 56D Changing a String (DP)

    题意:你可以对字符串s进行3种操作: 1,在pos位置插入字符ch. 2,删除pos位置的字符. 3,替换pos位置的字符为ch. 问最少需要多少次操作可以把字符s变成字符s1? 思路: 设dp[i] ...