校省选赛第一场D题TwoDecks题解
今天晚上第二场比赛,现在还是赛后刷上次的题目,越刷越伤心,发现我赛后一次AC的功力很强大啊!!!(希望今晚变成是赛中一次AC啊!!)
好啦,回归正题。
看题目
D. Merging Two Decks
time limit per test
2 seconds
memory limit per test
256 megabytes
input
input.txt
output
output.txt
There are two decks of cards lying on the table in front of you, some cards in these decks lay face up, some of them lay face down. You want to merge them into one deck in which each card is face down. You're going to do it in
two stages.
The first stage is to merge the two decks in such a way that the relative order of the cards from the same deck doesn't change. That is, for any two different cards
i and j in one deck, if card
i lies above card j, then after the merge card
i must also be above card
j.
The second stage is performed on the deck that resulted from the first stage. At this stage, the executed operation is the turning operation. In one turn you can take a few of the top cards, turn all of them, and put them back.
Thus, each of the taken cards gets turned and the order of these cards is reversed. That is, the card that was on the bottom before the turn, will be on top after it.
Your task is to make sure that all the cards are lying face down. Find such an order of merging cards in the first stage and the sequence of turning operations in the second stage, that make all the cards lie face down, and the
number of turns is minimum.
The first input line contains a single integer
n — the number of cards in the first deck
(1 ≤ n ≤ 105).
The second input line contains
n integers, separated by single spaces a1, a2, ..., an
(0 ≤ ai ≤ 1). Value
ai equals 0, if the
i-th card is lying face down, and 1, if the card is lying face up. The cards are given in the order from the topmost one to the bottommost one.
The third input line contains integer
m — the number of cards in the second deck
(1 ≤ m ≤ 105).
The fourth input line contains
m integers, separated by single spaces b1, b2, ..., bm
(0 ≤ bi ≤ 1). Value
bi equals 0, if the
i-th card is lying face down, and 1, if the card is lying face up. The cards are given in the order from the topmost to the bottommost.
In the first line print n + m space-separated integers — the numbers of the cards in the order, in which they will lie after the first stage. List the cards from top to bottom.
The cards from the first deck should match their indexes from
1 to n in the order from top to bottom. The cards from the second deck should match their indexes, increased by
n, that is, numbers from
n + 1 to n + m in the order from top to bottom.
In the second line print a single integer
x — the minimum number of turn operations you need to make all cards in the deck lie face down. In the third line print
x integers: c1, c2, ..., cx
(1 ≤ ci ≤ n + m), each of them represents the number of cards to take from the top of the deck to perform a turn operation. Print the operations in the order, in
which they should be performed.
If there are multiple optimal solutions, print any of them. It is guaranteed that the minimum number of operations doesn't exceed
6·105.
3
1 0 1
4
1 1 1 1
1 4 5 6 7 2 3
3
5 6 7
5
1 1 1 1 1
5
0 1 0 1 0
6 1 2 3 4 5 7 8 9 10
4
1 7 8 9
同样,先解释一下题目:
有两叠扑克牌,我们要将他们合并在一起,并且让所有扑克牌都朝下
有两个操作:
第一步操作: 将两叠扑克牌合并在一起,但是要保持原来的子顺序,比如
A牌是 正反正 B牌是反正正
1 2 3 4 5 6
合并之后不能是 3 1 2 4 5 6(3跑到1,2上面了!)但是可以是1 2 3 4 5 6 , 4 5 6 1 2 3,1 4 2 5 6 3,……等等,子顺序要保持。
第二步操作: 抽出上面k张牌反转后放回去,直到所有扑克牌都朝下。
比如合并后是 1 0 1 1 1
那么我们抽第一张牌反转后放回去 0 0 1 1 1 ,再抽出前两张,反转放回1 1 1 1 1 ,再5张反转就变成0 0 0 0 0(0 表示向下,1表示向上)
问最少操作次数。
我的思路就是贪心啦!
合并的时候,以第一叠牌的第一张为基准形成情况1 frm,以第二叠牌第一张为基准形成情况2 lat.
之后对于每个情况,如果其中一叠的当前牌是相同状态就直接放进,不然放另外一叠牌的当前牌,力求最相同连续。
这样就得出两个情况对叠后的一副牌啦。
之后就从头开始反转,不同就翻转,最后使得所有的牌都一样状态,此时如果是1状态,就再做一次反转。
这样得出的结果是最优的,这个可以自己想象。
我的代码:
/*******************************************************************************/
/* OS : 3.2.0-58-generic #88-Ubuntu SMP Tue Dec 3 UTC 2013 GNU/Linux
* Compiler : g++ (GCC) 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)
* Encoding : UTF8
* Date : 2014-04-03
* All Rights Reserved by yaolong.
*****************************************************************************/
/* Description: ***************************************************************
*****************************************************************************/
/* Analysis: ******************************************************************
*****************************************************************************/
/*****************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
class Pair
{
public:
int ind,stat;
Pair() {};
Pair & operator =(Pair rhs)
{
this->ind=rhs.ind;
this->stat=rhs.stat;
return *this;
} };
int main()
{ freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n,m,i,j,cntf,cntl;
vector<Pair> a,b;
vector<Pair> frm,lat;
int a_i,b_i,f_i,l_i;
while(cin>>n)
{
a.clear();
b.clear();
frm.clear();
lat.clear(); a.resize(n); for(i=0; i<n; i++)
{
cin>>j;
a[i].ind=i+1;
a[i].stat=j;
}
cin>>m;
b.resize(m);
frm.resize(n+m);
lat.resize(n+m); for(i=0; i<m; i++)
{
cin>>j;
b[i].ind=n+i+1;
b[i].stat=j;
} //合并,以a为标准
frm[0]=a[0];
f_i=0;
a_i=1;
b_i=0; while(f_i<n+m-1)
{
//cout<<"sb"<<f_i<<a_i<<b_i;;
if((a_i<n&&frm[f_i].stat==a[a_i].stat)||b_i==m)
{
f_i++;
frm[f_i]=a[a_i];
a_i++;
}
else
{
f_i++;
frm[f_i]=b[b_i];
b_i++;
}
}
//合并以b为标准
lat[0]=b[0];
l_i=0;
a_i=0;
b_i=1; while(l_i!=n+m-1)
{
if((b_i<m&&lat[l_i].stat==b[b_i].stat)|| (a_i==n))
{
l_i++;
lat[l_i]=b[b_i];
b_i++; }
else
{
l_i++;
lat[l_i]=a[a_i];
a_i++; }
}
/*
for(i=0;i<n+m;i++){
cout<<frm[i].stat<<" ";
}
cout<<endl; for(i=0;i<n+m;i++){
cout<<lat[i].stat<<" ";
}
cout<<endl;
*/
//对frm测试
cntf=cntl=0;
int stat=frm[0].stat;
for(f_i=1; f_i<n+m; f_i++)
{ if(frm[f_i].stat!=stat)
{
stat=frm[f_i].stat;
cntf++;
} }
if(stat==1)
{
cntf++;
} stat=lat[0].stat;
for(l_i=1; l_i<n+m; l_i++)
{ if(lat[l_i].stat!=stat)
{
stat=lat[l_i].stat;
cntl++;
} }
if(stat==1)
{
cntl++;
} if(cntl<cntf)
{
for(i=0;i<n+m;i++){
cout<<lat[i].ind<<" ";
}
cout<<endl;
cout<<cntl<<endl;
stat=lat[0].stat;
for(l_i=1; l_i<n+m; l_i++)
{ if(lat[l_i].stat!=stat)
{
stat=lat[l_i].stat;
cout<<l_i<<" ";
} }
if(stat==1)
{
cout<<l_i;
}
cout<<endl; }
else
{
for(i=0;i<n+m;i++){
cout<<frm[i].ind<<" ";
}
cout<<endl;
cout<<cntf<<endl;
stat=frm[0].stat;
for(f_i=1; f_i<n+m; f_i++)
{ if(frm[f_i].stat!=stat)
{
stat=frm[f_i].stat;
cout<<f_i<<" "; } }
if(stat==1)
{
cout<<f_i<<" ";
}
cout<<endl; } } fclose(stdin);
fclose(stdout); return 0; }
校省选赛第一场D题TwoDecks题解的更多相关文章
- 校省选赛第一场A题Cinema题解
今天是学校省选的第一场比赛,0战绩收工,死死啃着A题来做,偏偏一直WA在TES1. 赛后,才发现,原来要freopen("input.txt","r",stdi ...
- 校省选赛第一场C题解Practice
比赛时间只有两个小时,我没有选做这题,因为当时看样例也看不懂,比较烦恼. 后来发现,该题对输入输出要求很低.远远没有昨天我在做的A题的麻烦,赛后认真看了一下就明白了,写了一下,一次就AC了,没问题,真 ...
- hdu 5288||2015多校联合第一场1001题
pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学
牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...
- HDU6578 2019HDU多校训练赛第一场 1001 (dp)
HDU6578 2019HDU多校训练赛第一场 1001 (dp) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6578 题意: 你有n个空需要去填,有 ...
- HDU6579 2019HDU多校训练赛第一场1002 (线性基)
HDU6579 2019HDU多校训练赛第一场1002 (线性基) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题意: 两种操作 1.在序列末 ...
- 【2019多校第一场补题 / HDU6578】2019多校第一场A题1001Blank——dp
HDU6578链接 题意 有一串字符串,仅由 {0,1,2,3}\{0, 1, 2, 3\}{0,1,2,3} 组成,长度为 nnn,同时满足 mmm 个条件.每个条件由三个整数组成:l.r.xl.r ...
- 2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)
题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的 ...
随机推荐
- cuda(2) 矩阵乘法优化过程
Created on 2013-8-5URL : http://blog.sina.com.cn/s/blog_a502f1a30101mjch.html@author: zhxfl转载请说明出处 # ...
- JAVA Web项目的编码过滤器
首先写一个EncodeFilter的过滤类: package com.djtu.wy.common; import java.io.IOException;import javax.servlet.F ...
- oracle删除当前用户下所有表
1.如果有删除用户的权限,则可以: drop user user_name cascade; 加了cascade就可以把用户连带的数据全部删掉. 删除后再创建该用户.--创建管理员用户create u ...
- Shell编程笔记
Shell编程笔记与Windows下熟悉的批处理类似,也可以将一些重复性的命令操作写成一个脚本方便处理. 修改别人的脚本,运行后遇到个问题 setenv: command not found 查证 ...
- PC-[WIN7]此计算机无法联接家庭组
不能启用 HomeGroup Listener 解决: 1.设定为自动开始:Function Discovery Provider HostFunction Discovery Resource Pu ...
- poj 2186 Popular Cows【tarjan求scc个数&&缩点】【求一个图中可以到达其余所有任意点的点的个数】
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27698 Accepted: 11148 De ...
- POJ 2955 括号匹配,区间DP
题意:给你一些括号,问匹配规则成立的括号的个数. 思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立. 我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最 ...
- 微信开发第3章 通过accesstoken获取用户分组
上一章我们获取到了access_token,那么我们可以试着拿token获取用户粉丝分组,调用接口地址为: http请求方式: GET(请使用https协议) https://api.weixin.q ...
- Java多线程编程的常见陷阱(转)
Java多线程编程的常见陷阱 2009-06-16 13:48 killme2008 blogjava 字号:T | T 本文介绍了Java多线程编程中的常见陷阱,如在构造函数中启动线程,不完全的同步 ...
- C#目录文件复制、创建操作
using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Secu ...