tensorflow在文本处理中的使用——TF-IDF算法
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理
代码地址:https://github.com/nfmcclure/tensorflow-cookbook
解决问题:使用“tfidf”来进行垃圾短信的预测(使用逻辑回归算法)
缺点:未考虑单词顺序
TF-IDF:TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)。
TF表示词条在文档d中出现的频率。
IDF的主要思想是:如果包含词条t的文档越少,也就是分母越小,IDF越大,则说明词条t具有很好的类别区分能力。
i词在j文档中的tfidf值计算
|D|是全部文档数目
分母为有i词的文档数目,有时分母会为0,采用拉普拉斯平滑,作+1处理
步骤如下:
step1:导入需要的包
step2:准备数据集
step3:分词且构建文本向量
step4:分割数据集
step5:构建图
step6:训练效果变化
step1:导入需要的包
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import numpy as np
import os
import string
import requests
import io
import nltk
from zipfile import ZipFile
from sklearn.feature_extraction.text import TfidfVectorizer
from tensorflow.python.framework import ops
ops.reset_default_graph() # Start a graph session
sess = tf.Session() #定义批处理大小和特征向量长度
batch_size = 200
max_features = 1000
step2:准备数据集
step3:分词且构建文本向量
# Define tokenizer
def tokenizer(text):
words = nltk.word_tokenize(text)
return words # Create TF-IDF of texts
tfidf = TfidfVectorizer(tokenizer=tokenizer, stop_words='english', max_features=max_features)
sparse_tfidf_texts = tfidf.fit_transform(texts)
此时sparse_tfidf_texts已经将每个文本转成一个1000维的向量,多个文本构成矩阵(注意该矩阵为稀疏矩阵,查看值使用sparse_tfidf_texts.todense())
step4:分割数据集
# Split up data set into train/test
train_indices = np.random.choice(sparse_tfidf_texts.shape[0], round(0.8*sparse_tfidf_texts.shape[0]), replace=False)
test_indices = np.array(list(set(range(sparse_tfidf_texts.shape[0])) - set(train_indices)))
texts_train = sparse_tfidf_texts[train_indices]
texts_test = sparse_tfidf_texts[test_indices]
target_train = np.array([x for ix, x in enumerate(target) if ix in train_indices])
target_test = np.array([x for ix, x in enumerate(target) if ix in test_indices])
step5:构建图
# Create variables for logistic regression设置权重和偏置项
A = tf.Variable(tf.random_normal(shape=[max_features,1]))
b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders设置数据的占位符
x_data = tf.placeholder(shape=[None, max_features], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Declare logistic model (sigmoid in loss function)
model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function (Cross Entropy loss)损失函数计算
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_output, y_target)) # Actual Prediction 预测结果
prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
accuracy = tf.reduce_mean(predictions_correct) # Declare optimizer 用GD优化算法更新权重,最小化损失
my_opt = tf.train.GradientDescentOptimizer(0.0025)
train_step = my_opt.minimize(loss)
step6:训练效果变化
# Intitialize Variables
init = tf.initialize_all_variables()
sess.run(init) # Start Logistic Regression
train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []
for i in range(10000):
rand_index = np.random.choice(texts_train.shape[0], size=batch_size)
rand_x = texts_train[rand_index].todense()
rand_y = np.transpose([target_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) # Only record loss and accuracy every 100 generations,100回记录,500回输出状态
if (i+1)%100==0:
i_data.append(i+1)
train_loss_temp = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
train_loss.append(train_loss_temp) test_loss_temp = sess.run(loss, feed_dict={x_data: texts_test.todense(), y_target: np.transpose([target_test])})
test_loss.append(test_loss_temp) train_acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, y_target: rand_y})
train_acc.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict={x_data: texts_test.todense(), y_target: np.transpose([target_test])})
test_acc.append(test_acc_temp)
if (i+1)%500==0:
acc_and_loss = [i+1, train_loss_temp, test_loss_temp, train_acc_temp, test_acc_temp]
acc_and_loss = [np.round(x,2) for x in acc_and_loss]
print('Generation # {}. Train Loss (Test Loss): {:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
结果如下:
图像展示
# Plot loss over time
plt.plot(i_data, train_loss, 'k-', label='Train Loss')
plt.plot(i_data, test_loss, 'r--', label='Test Loss', linewidth=4)
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.legend(loc='upper right')
plt.show() # Plot train and test accuracy
plt.plot(i_data, train_acc, 'k-', label='Train Set Accuracy')
plt.plot(i_data, test_acc, 'r--', label='Test Set Accuracy', linewidth=4)
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()
tensorflow在文本处理中的使用——TF-IDF算法的更多相关文章
- tensorflow在文本处理中的使用——Doc2Vec情感分析
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——Word2Vec预测
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——CBOW词嵌入模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- 55.TF/IDF算法
主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的 一.算法介绍 relevance score算法,简单来说 ...
- Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据
相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...
- tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...
- tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- tf–idf算法解释及其python代码
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
随机推荐
- js树状菜单
html部分 <ul class="tree"> <li><span><a href="#">JavaScrip ...
- QT UI 线程为什么卡死?
我的工程是由三个线程处理不同任务构成的,其中UI用于显示,还有数据处理和数据接收发送线程. 在运行的过程中发现由于数据处理线程不及时,超过了设定的100ms,导致UI卡死,几个周期后又恢复,接着又卡死 ...
- Linux配置redis开机启动(CentOS 7)
https://blog.csdn.net/qq_31803503/article/details/79246205 本次配置linux版本是CentOS 7 首先将 redis-3.2.3/uti ...
- 如何mock https请求
最近在测试项目过程当中,遇到客户端mock https请求的场景,但是默认用charles抓取出来的https请求是乱码的,对于这类请求如何来mock,有以下2种方式: 1.这里有篇http://co ...
- 小爬爬7:回顾&&crawlSpider
1.回顾昨日内容 回顾 - 全站数据爬取(分页) - 手动请求的发送Request(url,callback) - post请求和cookie处理 - start_requests(self) - F ...
- python 不定长参数*args
- HDU-1024_Max Sum Plus Plus
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) P ...
- 【NS2】NS2 教學手冊(转载)
之前做毕设的时候搜索NS2的相关资料,发现这个里面涵盖很广,特此收藏,感谢原作者的辛勤劳作. NS2 教學手冊 ( NS2 Learning Guide) [快速連結區] My works 中文影音 ...
- 直击 KubeCon 现场 | 阿里云 Hands-on Workshop 亮点回顾
相关文章链接[合集]规模化落地云原生,阿里云亮相 KubeCon China沉淀九年,一文看清阿里云原生大事件 2019 年 6 月 24 日至 26 日,KubeCon + CloudNativeC ...
- Android中使用Apache common ftp进行下载文件
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/birdsaction/article/details/36379201 在Android使用ftp下 ...