吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split def load_data_classfication():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #支持向量机SVM非线性分类SVC模型
def test_SVC_linear(*data):
X_train,X_test,y_train,y_test=data
cls=svm.SVC(kernel='linear')
cls.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(cls.coef_,cls.intercept_))
print('Score: %.2f' % cls.score(X_test, y_test)) # 生成用于分类的数据集
X_train,X_test,y_train,y_test=load_data_classfication()
# 调用 test_SVC_linear
test_SVC_linear(X_train,X_test,y_train,y_test)
def test_SVC_poly(*data):
'''
测试多项式核的 SVC 的预测性能随 degree、gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure()
### 测试 degree ####
degrees=range(1,20)
train_scores=[]
test_scores=[]
for degree in degrees:
cls=svm.SVC(kernel='poly',degree=degree)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
ax=fig.add_subplot(1,3,1) # 一行三列
ax.plot(degrees,train_scores,label="Training score ",marker='+' )
ax.plot(degrees,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_poly_degree ")
ax.set_xlabel("p")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5) ### 测试 gamma ,此时 degree 固定为 3####
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
cls=svm.SVC(kernel='poly',gamma=gamma,degree=3)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
ax=fig.add_subplot(1,3,2)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_poly_gamma ")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5)
### 测试 r ,此时 gamma固定为10 , degree 固定为 3######
rs=range(0,20)
train_scores=[]
test_scores=[]
for r in rs:
cls=svm.SVC(kernel='poly',gamma=10,degree=3,coef0=r)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
ax=fig.add_subplot(1,3,3)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_poly_r ")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVC_poly
test_SVC_poly(X_train,X_test,y_train,y_test)
def test_SVC_rbf(*data):
'''
测试 高斯核的 SVC 的预测性能随 gamma 参数的影响
'''
X_train,X_test,y_train,y_test=data
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
cls=svm.SVC(kernel='rbf',gamma=gamma)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_rbf")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVC_rbf
test_SVC_rbf(X_train,X_test,y_train,y_test)
def test_SVC_sigmoid(*data):
'''
测试 sigmoid 核的 SVC 的预测性能随 gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure() ### 测试 gamma ,固定 coef0 为 0 ####
gammas=np.logspace(-2,1)
train_scores=[]
test_scores=[] for gamma in gammas:
cls=svm.SVC(kernel='sigmoid',gamma=gamma,coef0=0)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
ax=fig.add_subplot(1,2,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_sigmoid_gamma ")
ax.set_xscale("log")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5)
### 测试 r,固定 gamma 为 0.01 ######
rs=np.linspace(0,5)
train_scores=[]
test_scores=[] for r in rs:
cls=svm.SVC(kernel='sigmoid',coef0=r,gamma=0.01)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test))
ax=fig.add_subplot(1,2,2)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVC_sigmoid_r ")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVC_sigmoid
test_SVC_sigmoid(X_train,X_test,y_train,y_test)
吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型的更多相关文章
- 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——数据预处理包裹式特征选取模型
from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_select ...
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多维缩放降维MDS模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
随机推荐
- 2018ICPC南京站Problem A. Adrien and Austin
题意: n个石头再1-n的位置上,两个人轮流取时候,必须取连续的一段,最多取k个,不能取为输,问谁会赢 解析: 当k大于等于2时,先手总能把石头分成相等的两部分,此时后手无论怎么走,先手在对称的位置选 ...
- 熵权法(the Entropy Weight Method)以及MATLAB实现
按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量:如果指标的信息熵越小,该指标提供的信息量越小,在综合评价中所起作用理当越小,权重就应该越低.因此,可利用信息熵这个工 ...
- js中变量含(参数、数组)作用域传递问题
js没有块级作用域(你可以自己闭包或其他方法实现),只有函数级作用域和全局作用域,函数外面的变量函数里面可以找到使用,函数里面的变量外面无法访问到. 写这个是因为ES6中的一个例子开始的.首先看下例子 ...
- linux - python:卸载
[root@test ~]# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps ##强制删除已安装程序及其关联[root@test ~]# ...
- JavaScript 闭包浅析
词法作用域 闭包 概念 作用 用法 待续 词法作用域 词法作用域是指一个变量在源码中声明的位置作为它的作用域.同时嵌套的函数可以访问到其外层作用域中声明的变量. 函数中的定义的局部变量只能由函数的内部 ...
- Django文件夹
Django文件 App文件夹 migrations文件 生成models创建表的翻译语句 telemplatetags文件夹 telemplatetags文件夹下的文件专门用来创建自定义标签.自定义 ...
- npm 配置国内源
淘宝镜像 npm config set registry http://registry.npm.taobao.org
- soundtouch change pitch matlab implementation
function output = changePitch(input, pitchInSemitones) % one octave is 12 semitones octave = pitchIn ...
- Python 之路Day04
列表 list:数据类型之一,存储数据,大量的,存储不同类型的数据 lst=[1,2,'alex',True,['钥匙','门禁卡',['银行卡']]] print(lst) 列表 -- 容器 别的语 ...
- AspxDashBorad_OnDashboardLoaded 获取对应的DashboardParameter
protected void ASPxDashboardViewerThrend_OnDashboardLoaded(object sender, DashboardLoadedWebEventArg ...