题意

一个\(r\times c\)的棋盘,棋盘上有\(n\)个标记点,每个点有三种类型,类型\(1\)可以传送到本行任意标记点,类型\(2\)可以传送到本列任意标记点,类型\(3\)可以传送到周围八连通任意标记点。求最长路径。

\(r,c\leq 10^6,n\leq 10^5\)

题解

这题做法很多,我就把每一行的所有类型\(1\)门缩到一起(直接找一个代表),列也同理,然后暴力连边,类型\(3\)连边用\(\text{map}\),这样每个点的入边中类型\(1\)或\(2\)最多有\(1\)条,类型\(3\)最多\(8\)条,大概可以说明边数和点数同阶,于是\(\text{Tarjan}\)缩点然后\(dp\)求最长路...

#include <algorithm>
#include <utility>
#include <cstdio>
#include <vector>
#include <stack>
#include <map>
using namespace std; const int N = 1e5 + 10;
const int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};
const int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; struct node {
int x, y, z, sz;
} a[N];
int n, r, c, f[N], rt[2][N * 10], dT[N];
vector<int> ob[2][N * 10], G[N], T[N];
map<pair<int, int>, int> ma;
bool isr[N]; int dfn[N], low[N], sz[N], bel[N], scc;
stack<int> st;
bool ins[N]; void tarjan(int u) {
low[u] = dfn[u] = ++ dfn[0];
st.push(u); ins[u] = 1;
for(int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if(ins[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]) {
scc ++;
while(1) {
int v = st.top(); st.pop();
ins[v] = 0; bel[v] = scc;
sz[scc] += a[v].sz;
if(u == v) break ;
}
}
} int pa[N];
int solve(int u) {
if(pa[u]) return pa[u];
for(int i = 0; i < T[u].size(); i ++) {
pa[u] = max(pa[u], solve(T[u][i]));
}
pa[u] += sz[u];
return pa[u];
} int main() {
scanf("%d%d%d", &n, &r, &c);
for(int i = 1; i <= n; i ++) {
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
ma[make_pair(a[i].x, a[i].y)] = i;
ob[0][a[i].x].push_back(i);
ob[1][a[i].y].push_back(i);
a[i].sz = 0;
}
for(int i = 1; i <= n; i ++) {
if(a[i].z == 1) {
int &u = rt[0][a[i].x];
if(!u) u = i;
a[u].sz ++; f[i] = u;
}
if(a[i].z == 2) {
int &u = rt[1][a[i].y];
if(!u) u = i;
a[u].sz ++; f[i] = u;
}
if(a[i].z == 3) {
f[i] = i;
a[i].sz ++;
}
isr[f[i]] = 1;
}
for(int i = 1; i <= n; i ++)
if(isr[i]) {
if(a[i].z == 1) {
for(int j = 0; j < ob[0][a[i].x].size(); j ++) {
int v = ob[0][a[i].x][j];
G[i].push_back(f[v]);
}
}
if(a[i].z == 2) {
for(int j = 0; j < ob[1][a[i].y].size(); j ++) {
int v = ob[1][a[i].y][j];
G[i].push_back(f[v]);
}
}
if(a[i].z == 3) {
for(int j = 0; j < 8; j ++) {
int v = ma[make_pair(a[i].x + dx[j], a[i].y + dy[j])];
if(v) {
G[i].push_back(f[v]);
}
}
}
}
for(int i = 1; i <= n; i ++)
if(isr[i] && !dfn[i]) {
tarjan(i);
}
for(int i = 1; i <= n; i ++) {
if(isr[i]) {
for(int j = 0; j < G[i].size(); j ++) {
int v = G[i][j];
if(bel[i] != bel[v]) {
T[bel[i]].push_back(bel[v]);
dT[bel[v]] ++;
}
}
}
}
int ans = 0;
for(int i = 1; i <= scc; i ++)
if(!dT[i]) {
ans = max(ans, solve(i));
}
printf("%d\n", ans);
return 0;
}

「BZOJ 1924」「SDOI 2010」所驼门王的宝藏「Tarjan」的更多相关文章

  1. BZOJ 1924: [Sdoi2010]所驼门王的宝藏 【tarjan】

    Description 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先 知”的Alpaca L. Sotomon 是这个家族的领袖,外人也称其为“所驼门王”.所 驼门王毕生致力于维 ...

  2. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  3. [BZOJ 1924][Sdoi2010]所驼门王的宝藏

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1285  Solved: 574[Submit][Sta ...

  4. 「模拟8.18」字符串(卡特兰数)·乌鸦喝水(树状数组,二分)·所驼门王的宝藏(tarjan,拓扑)

    最近好颓啊,所以啥都做不出来 简单说一下这次考试,分机房了,还分不同考卷,果然我还是留在二机房的蒟蒻, 大概也只有这样的简单题,才能勉强水个rank 3吧........ 其实不必管在哪个机房,努力便 ...

  5. bzoj 1924 [Sdoi2010]所驼门王的宝藏(构图,SCC,DP)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  6. 【刷题】BZOJ 1924 [Sdoi2010]所驼门王的宝藏

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  7. BZOJ 1924 所驼门王的宝藏(强连通分量缩点+DAG最长链)

    思路不是很难,因为宝藏只会在给出的n个点内有,于是只需要在这n个点里面连边,一个点如果能到达另一个点则连一条有向边, 这样用强连通分量缩点后答案就是DAG的最长链. 问题在于暴力建图是O(n^2)的, ...

  8. BZOJ 1924 && Luogu P2403 [SDOI2010]所驼门王的宝藏 恶心建图+缩点DP

    记住:map一定要这么用: if(mp[x[i]+dx[j]].find(y[i]+dy[j])!=mp[x[i]+dx[j]].end()) add(i,mp[x[i]+dx[j]][y[i]+dy ...

  9. 所驼门王的宝藏(bzoj 1924)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

随机推荐

  1. fiddler代理hosts配置

    1 需求背景 fidder开启后,C:\Windows\System32\drivers\etc\hosts配置失效问题:fiddler本身代理hosts配置表,修改后,可以省去在手机等代理使用者的系 ...

  2. Hibernate4.3.5搭建Log4j日志环境

    本文记录Hibernate4.3.5搭建Log4j日志环境的过程 1.搞清楚Hibernate4.3.5的日志环境依赖 方法:查看帮助文档 3.5. Logging Important Complet ...

  3. keil:C语言里面调用汇编程序

    C语言直观,汇编效率高,C里面嵌入汇编是很好的选择. 路径大概如图: mian.c是我的C语言程序,Func.s是汇编程序. 主要是Init_1这个函数的实现在汇编文件里面,使用汇编实现的. 首先在C ...

  4. Apple Ad Hoc

    Apple Ad Hoc 发布测试 App只能通过Ad Hoc分享给绑定我们账号的设备上,所以至是一百台 1.官网member Center创建Ad Hoc证书 2.在官网下载Ad Hoc证书到mac ...

  5. Delphi Help

    http://docwiki.embarcadero.com/CodeExamples/Seattle/en/Category:Content_by_Version

  6. Gym 101128 B Black Vienna

    题意 有A-Z 26张牌,现在从中抽出3张牌,并把剩下的23张牌分给选手1和2,现在有n次询问,每次询问一个选手是否有某两张牌,和选手的回答.回答说自己有这两张牌中的几张,问拿出的三张牌有多少种方案能 ...

  7. codeforce452DIV2——E. Segments Removal

    题目 Vasya has an array of integers of length n. Vasya performs the following operations on the array: ...

  8. Android模拟器出现emulator-5554 disconnected! Cancelling activity launch !的解决办法

    关于 emulator-5554 disconnected! Cancelling 'xxx activity launch'!的问题,解决方法: d: cd D:/Program Files/and ...

  9. Ionic01 简单介绍、环境搭建、创建项目、项目结构、创建组件、创建页面、子页面跳转

    1 Ionic 基本介绍 Ionic 是一款基于 Angular.Cordova 的强大的 HTML5 移动应用开发框架 , 可以快速创建一个跨平台的移动应用.可以快速开发移动 App.移动端 WEB ...

  10. Vue.js 安装及其环境搭建

    For me or other first studying vue.js. For Windows PC: 1.先安装node.js 安装官网最新的即可 版本应该要大于6.0版本 nodejs的官网 ...