作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html

给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。

可图化的判定为:$d_1+d_2+ \cdots +d_n=0(mod2)$。即把奇数度的点配对,剩下的变为自环。
可简单图化的判定,即Havel-Hakimi定理:

我们把序列$D$变换为非增序列,即$d_1\geq d_2\geq \cdots \geq d_n$,则$D$可简单图化当且仅当$D'=(d_2-1, d_3-1, \cdots ,d_{(d1+1)}-1, d_{d1+2}, d_{d1+3}, \cdots ,d_n)$可简单图化。

证明:

<--:若$D'$可简单图化,把原图$G_D$中的最大度点与$G_{D'}$中度最大的$d_1$个点连边即可,图$G_D$必为简单图。

-->:若$D$可简单图化,设得到的简单图为$D_G$。分两种情况考虑:
(a)若$G_D$中存在边$(v_1,v_2), (v_1,v_3), \dots ,(v_1,v_{d_1+1})$,则删除这些边得简单图$G_{D'}$,于是$D'$可简单图化为$G_{D'}$

(b)若存在点$v_i,v_j(i<j)$且$(v_1,v_i)$不在$G_D$中,但$(v_1,v_j)$在$G_D$中。这时,因为$d_i \geq d_j$,必存在$k$使得$(v_i, v_k)$在$D_G$中但$(v_j,v_k)$不在$G_D$中。这时我们可以令$G''=G_D-\{(v_i,v_k),(v_1,v_j)\}+\{(v_k,v_j),(v_1,v_i)\}$。$G''$的度序列仍为$D$,使用情况(a)处理。

例如对于下图,我们删除两条打红X的边,添加两条虚线的边,即可转化为$G''$

代码实现很简单,每次对数组arr排序,然后对于arr[1],arr[2],...,arr[arr[0]]每个数减一,并另arr[0]=0。重复n次,最后检验数组是否全部为0,是则输出YES和图,否则输出NO。

需要注意的是输出格式,每两个case之间需要输出一个空行。

代码如下:

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>
#define MAXN 11
using namespace std;
class node
{
public:
int id;
int degree;
bool operator < (const node & a)const
{
return degree>a.degree;
}
};
int n;
node arr[MAXN];
int map[MAXN][MAXN];
void solve()
{
memset(map, , sizeof(map));
for( int i = ; i < n ; i++ )
{
sort(arr, arr+n);
for( int j = ; j <= arr[].degree ; j++ )
{
arr[j].degree -= ;
map[arr[].id][arr[j].id] = ;
map[arr[j].id][arr[].id] = ;
}
arr[].degree = ;
}
for( int i = ; i < n ; i++ )
{
if( arr[i].degree < )
{
printf("NO\n\n");
return ;
}
}
printf("YES\n");
for( int i = ; i < n ; i++ )
{
for( int j = ; j < n ; j++ )
{
printf("%d%c", map[i][j], j==(n-)?'\n':' ');
}
}
printf("\n");
}
int main(int argc, char *argv[])
{
int t;
scanf("%d", &t);
while( t-- )
{
scanf("%d", &n);
for( int i = ; i < n ; i++ )
{
scanf("%d", &arr[i].degree);
arr[i].id = i;
}
solve();
}
}

poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理的更多相关文章

  1. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  2. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  3. poj 1659 Frogs' Neighborhood (DFS)

    http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total S ...

  4. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  5. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  6. POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)

    题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...

  7. poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 26 ...

  8. poj 1659 Frogs' Neighborhood( 青蛙的邻居)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 40 ...

  9. poj 1659 Frogs' Neighborhood(出入度、可图定理)

    题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了  可图定理:对每个节点的度从 ...

随机推荐

  1. 面试题——设计一个程序:运行报错Stack Overflow Error

    所谓Stack Overflow就是栈里面放的东西太多了,溢出了. 大家知道栈里面存放的是基本数据类型还有引用类型. 下面看这个程序 class Test { public static void m ...

  2. Dijkstra最短路径算法[贪心]

    Dijkstra算法的标记和结构与prim算法的用法十分相似.它们两者都会从余下顶点的优先队列中选择下一个顶点来构造一颗扩展树.但千万不要把它们混淆了.它们解决的是不同的问题,因此,所操作的优先级也是 ...

  3. C#多线程的介绍(园子里比较全的一篇)

    一.多线程的概念  Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管理器查看当前系统运行的程序和进程.什么是进程呢?当一个程序开始运行时,它就是一 ...

  4. 关于Android M RuntimePermission的问题

    关于shouldShowRequestPermissionRationale的理解, 在onRequestPermissionsResult里如果用户拒绝了权限, 可以调用这个api, 返回true, ...

  5. Clustering by density peaks and distance

    这次介绍的是Alex和Alessandro于2014年发表在的Science上的一篇关于聚类的文章[13],该文章的基本思想很简单,但是其聚类效果却兼具了谱聚类(Spectral Clustering ...

  6. 小白日记18:kali渗透测试之缓冲区溢出实例(二)--Linux,穿越火线1.9.0

    Linux系统下穿越火线-缓冲区溢出 原理:crossfire 1.9.0 版本接受入站 socket 连接时存在缓冲区溢出漏洞. 工具: 调试工具:edb: ###python在漏洞溢出方面的渗透测 ...

  7. php.ini 配置文件的深入解析

    [PHP] ; PHP还是一个不断发展的工具,其功能还在不断地删减 ; 而php.ini的设置更改可以反映出相当的变化, ; 在使用新的PHP版本前,研究一下php.ini会有好处的 ;;;;;;;; ...

  8. Samba服务详解

    Samba文件服务器 本章结构 服务简介 SMB协议 Server Message Block,服务消息块 CIFS协议 Common Internet File System,通用互联网文件系统 S ...

  9. [改善Java代码]在明确的场景下,为集合指定初始容量

    我们经常使用ArrayList,Vector,Hashmap等集合,一般都是直接用new跟上类名声明出一个集合来,然后使用add,remove,等方法进行操作,而且因为它们是自动管理长度的,所以不用我 ...

  10. [改善Java代码]多种最值算法,适时选择

    建议64:多种最值算法,适时选择. 对一批数据进行排序,然后找出其中的最大值或最小值,这是基本的数据结构知识.在Java中我们可以通过编写算法的方式,也可以通过数组先排序再取值的方式来实现.下面以求最 ...