http://codeforces.com/problemset/problem/1249/E

E. By Elevator or Stairs?
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are planning to buy an apartment in a n

-floor building. The floors are numbered from 1 to n

from the bottom to the top. At first for each floor you want to know the minimum total time to reach it from the first (the bottom) floor.

Let:

  • ai

for all i from 1 to n−1 be the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

  • -th as well) using the stairs;
  • bi

for all i from 1 to n−1 be the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i-th as well) using the elevator, also there is a value c

  • — time overhead for elevator usage (you need to wait for it, the elevator doors are too slow!).

In one move, you can go from the floor you are staying at x

to any floor y (x≠y

) in two different ways:

  • If you are using the stairs, just sum up the corresponding values of ai

. Formally, it will take ∑i=min(x,y)max(x,y)−1ai

  • time units.
  • If you are using the elevator, just sum up c

and the corresponding values of bi. Formally, it will take c+∑i=min(x,y)max(x,y)−1bi

  • time units.

You can perform as many moves as you want (possibly zero).

So your task is for each i

to determine the minimum total time it takes to reach the i-th floor from the 1

-st (bottom) floor.

Input

The first line of the input contains two integers n

and c (2≤n≤2⋅105,1≤c≤1000

) — the number of floors in the building and the time overhead for the elevator rides.

The second line of the input contains n−1

integers a1,a2,…,an−1 (1≤ai≤1000), where ai is the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

-th as well) using the stairs.

The third line of the input contains n−1

integers b1,b2,…,bn−1 (1≤bi≤1000), where bi is the time required to go from the i-th floor to the (i+1)-th one (and from the (i+1)-th to the i

-th as well) using the elevator.

Output

Print n

integers t1,t2,…,tn, where ti is the minimum total time to reach the i

-th floor from the first floor if you can perform as many moves as you want.

Examples
Input

Copy
10 2
7 6 18 6 16 18 1 17 17
6 9 3 10 9 1 10 1 5
Output

Copy
0 7 13 18 24 35 36 37 40 45
Input

Copy
10 1
3 2 3 1 3 3 1 4 1
1 2 3 4 4 1 2 1 3
Output

Copy
0 2 4 7 8 11 13 14 16 17

题意:有n楼,给你1到2,2到3....n-1到n楼的爬楼梯时间和坐电梯时间。从楼梯去坐电梯需要等电梯开门的时间c。问每一楼到一楼的最短时间。

解法:考虑四个转移状态:从楼梯到楼梯,从楼梯到电梯,从电梯到楼梯,从电梯到电梯。

//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdio.h>
#include <queue>
#include <stack>;
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 998244353
#define PI acos(-1)
using namespace std;
typedef long long ll ;
ll a[] , b[];
ll dp[][]; int main()
{
ll n , c ;
while(~scanf("%lld%lld" , &n , &c))
{
for(int i = ; i <= n ; i++)
{
scanf("%lld" , &a[i]);
}
for(int i = ; i <= n ; i++)
{
scanf("%lld" , &b[i]);
}
memset(dp , INF , sizeof(dp));
dp[][] = c ;
dp[][] = ;
for(int i = ; i <= n ; i++)
{
dp[i][] = min(dp[i][] , dp[i-][]+a[i]);//电梯到楼梯
dp[i][] = min(dp[i][] , dp[i-][]+a[i]);//楼梯到楼梯
dp[i][] = min(dp[i][] , dp[i-][]+b[i]);//电梯到电梯
dp[i][] = min(dp[i][] , dp[i-][]+b[i]+c);//楼梯到电梯
} for(int i = ; i < n ; i++)
cout << min(dp[i][] , dp[i][]) << " " ;
cout << min(dp[n][] , dp[n][]) << endl ;
} return ;
}

dp(电梯与楼梯)的更多相关文章

  1. CodeForces - 1249E 楼梯和电梯

    题意:第一行输入n和c,表示有n层楼,电梯来到需要时间c 输入两行数,每行n-1个,表示从一楼到二楼,二楼到三楼.....n-1楼到n楼,a[ ] 走楼梯和 b[ ] 乘电梯花费的时间 思路:动态规划 ...

  2. CodeForces1249E-By Elevator or Stairs?-好理解自己想不出来的dp

    Input The first line of the input contains two integers nn and cc (2≤n≤2⋅105,1≤c≤10002≤n≤2⋅105,1≤c≤1 ...

  3. 兑换零钱-(dp)

    https://ac.nowcoder.com/acm/contest/910/B 本以为是组合数,没想到是dp求解,变成水题了,让我想起了第一次见到dp的爬楼梯,可以走一步和走两步,走40步,这里相 ...

  4. CodeForces round 967 div2 题解(A~E)

    本来准备比完赛就写题解的, 但是一拖拖了一星期, 唉 最后一题没搞懂怎么做,恳请大神指教 欢迎大家在评论区提问. A Mind the Gap 稳定版题面 https://cn.vjudge.net/ ...

  5. codeforces966 A

    这题主要就是考虑y1两侧的最近的电梯和楼梯 当时主要是考虑  如果电梯在y1和y2中间的话   那么直接做电梯就是最优解   如果在y2右边就用abs去算 然后发现其实只考虑 y1的左右两边的电梯和楼 ...

  6. leetcode算法总结

    算法思想 二分查找 贪心思想 双指针 排序 快速选择 堆排序 桶排序 搜索 BFS DFS Backtracking 分治 动态规划 分割整数 矩阵路径 斐波那契数列 最长递增子序列 最长公共子系列 ...

  7. 机器人自主移动的秘密,从SLAM技术说起(一)

    博客转载自:https://www.leiphone.com/news/201609/c35bn1M9kgVaCCef.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号sla ...

  8. 2.8/4/6/8mm/12mm焦距的镜头分别能监控多大范围?

    2.8/4/6/8mm/12mm焦距的镜头分别能监控多大范围? 相关介绍 一.焦距和监控距离的关系 我司IPC镜头焦距有2.8/4mm/6mm/8mm等多种选择,可以满足室内外各种环境的拍摄需求.IP ...

  9. Leedcode算法专题训练(动态规划)

    递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算. 斐波那契数列 1. 爬楼梯 70. Climbing Stairs (Easy) L ...

随机推荐

  1. H5 FileReader对象

    前言:FileReader是一种异步文件读取机制,结合input:file可以很方便的读取本地文件. input:file 在介绍FileReader之前,先简单介绍input的file类型. < ...

  2. UVA 315 :Network (无向图求割顶)

    题目链接 题意:求所给无向图中一共有多少个割顶 用的lrj训练指南P314的模板 #include<bits/stdc++.h> using namespace std; typedef ...

  3. vue-cli3.0配置

    仅在项目根目录中新建vue.config.js文件即可,部分配置如下 module.exports = { // 基本路径 baseUrl: '/', // 输出文件目录 outputDir: 'di ...

  4. 【leetcode】1137. N-th Tribonacci Number

    题目如下: The Tribonacci sequence Tn is defined as follows: T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 ...

  5. js加密php解密(CryptoJS)碰到的坑

    今天做了一个功能,需要js传密码到php文件,对js密码 进行判断,为想为这个传输过程进行解密,参考了网上的一个方法(这个方法我只是使用了,并没有太深了解0.0) 首先要引入3个js文件 (在网上可搜 ...

  6. Java 静态初始化块等的执行顺序

    实例代码 package text; class Root { static{ System.out.println("Root的静态初始化块"); } { System.out. ...

  7. 170830-关于JdbcTemplate的练习题以及其中的问题

    实验1:测试数据源 在spring文件中配置: 测试数据源: 结果: 实验2:将emp_id=5的记录的salary字段更新为1300.00[更新操作] update函数中,第一个是sql语句,后面的 ...

  8. java虚拟机规范-加载、链接与初始化

    前言 java虚拟机是java跨平台的基石,本文的描述以jdk7.0为准,其他版本可能会有一些微调.java代码本身并不能为jvm识别,实际上在jvm中的表现形式为Class对象,一个java类从字节 ...

  9. Flask中的对象的配置

    常用的有 1.'DEBUG': False, # 是否开启Debug模式 2.'TESTING': False, # 是否开启测试模式 3.'SECRET_KEY': None # 在启用Flask内 ...

  10. ngTemplateOutlet递归的问题

    今天尝试通过 ng-template 加 ngTemplateOutlet实现一个递归的菜单.但是遇到一个问题:NullInjectorError: No provider for NzMenuDir ...