1.linearRegCostFunction:

function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
% h=(X*theta);
for i=1:m,
J=J+1/(2*m)*(h(i)-y(i))^2;
endfor
n= length(theta);
for i=2:n,
J=J+lambda/(2*m)*theta(i)^2;
endfor grad(1)=1/m*(h-y)'*X(:,1);
for i=2:n,
grad(i)=1/m*(h-y)'*X(:,i)+lambda/m*theta(i);
endfor % ========================================================================= grad = grad(:); end

  

2.learningCuvers

function [error_train, error_val] = ...
learningCurve(X, y, Xval, yval, lambda)
%LEARNINGCURVE Generates the train and cross validation set errors needed
%to plot a learning curve
% [error_train, error_val] = ...
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
% cross validation set errors for a learning curve. In particular,
% it returns two vectors of the same length - error_train and
% error_val. Then, error_train(i) contains the training error for
% i examples (and similarly for error_val(i)).
%
% In this function, you will compute the train and test errors for
% dataset sizes from 1 up to m. In practice, when working with larger
% datasets, you might want to do this in larger intervals.
% % Number of training examples
m = size(X, 1); % You need to return these values correctly
error_train = zeros(m, 1);
error_val = zeros(m, 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the cross validation errors in error_val.
% i.e., error_train(i) and
% error_val(i) should give you the errors
% obtained after training on i examples.
%
% Note: You should evaluate the training error on the first i training
% examples (i.e., X(1:i, :) and y(1:i)).
%
% For the cross-validation error, you should instead evaluate on
% the _entire_ cross validation set (Xval and yval).
%
% Note: If you are using your cost function (linearRegCostFunction)
% to compute the training and cross validation error, you should
% call the function with the lambda argument set to 0.
% Do note that you will still need to use lambda when running
% the training to obtain the theta parameters.
%
% Hint: You can loop over the examples with the following:
%
% for i = 1:m
% % Compute train/cross validation errors using training examples
% % X(1:i, :) and y(1:i), storing the result in
% % error_train(i) and error_val(i)
% ....
%
% end
% % ---------------------- Sample Solution ---------------------- for i=1:m,
theta=trainLinearReg(X(1:i,:),y(1:i),lambda);
error_train(i)=linearRegCostFunction(X(1:i,:),y(1:i),theta,0);
error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
endfor % ------------------------------------------------------------- % ========================================================================= end

  

3.polyFeatures

function [X_poly] = polyFeatures(X, p)
%POLYFEATURES Maps X (1D vector) into the p-th power
% [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
% maps each example into its polynomial features where
% X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p];
% % You need to return the following variables correctly.
X_poly = zeros(numel(X), p); % ====================== YOUR CODE HERE ======================
% Instructions: Given a vector X, return a matrix X_poly where the p-th
% column of X contains the values of X to the p-th power.
%
% for i=1:p,
X_poly(:,i)=(X.^i);
endfor % ========================================================================= end

  

4.ValidationCurve

function [lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval)
%VALIDATIONCURVE Generate the train and validation errors needed to
%plot a validation curve that we can use to select lambda
% [lambda_vec, error_train, error_val] = ...
% VALIDATIONCURVE(X, y, Xval, yval) returns the train
% and validation errors (in error_train, error_val)
% for different values of lambda. You are given the training set (X,
% y) and validation set (Xval, yval).
% % Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]'; % You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the validation errors in error_val. The
% vector lambda_vec contains the different lambda parameters
% to use for each calculation of the errors, i.e,
% error_train(i), and error_val(i) should give
% you the errors obtained after training with
% lambda = lambda_vec(i)
%
% Note: You can loop over lambda_vec with the following:
%
% for i = 1:length(lambda_vec)
% lambda = lambda_vec(i);
% % Compute train / val errors when training linear
% % regression with regularization parameter lambda
% % You should store the result in error_train(i)
% % and error_val(i)
% ....
%
% end
%
% for i=1:length(lambda_vec),
Lam=lambda_vec(i);
theta=trainLinearReg(X,y,Lam);
error_train(i)=linearRegCostFunction(X,y,theta,0);
error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
endfor % ========================================================================= end

  

Machine learning第6周编程作业的更多相关文章

  1. Machine learning 第7周编程作业 SVM

    1.Gaussian Kernel function sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis fun ...

  2. Machine learning 第8周编程作业 K-means and PCA

    1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...

  3. Machine learning 第5周编程作业

    1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...

  4. Machine learning第四周code 编程作业

    1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业

    做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...

  8. Machine Learning - 第7周(Support Vector Machines)

    SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...

  9. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

随机推荐

  1. Linux&&Mac 自动增加CSDN访问量

    我心里面有两个小人. 一个叫愧疚,对CSDN这么一个分享知识的平台的愧疚,因为我正在做一件对不起CSDN的事情. 一个叫虚荣,对CSDN访问量的渴望过渡使得我踏出了这一步. 这一步,踏入了深渊.. 最 ...

  2. 【Centos linux系统】命令行(静默)安装oracle 11gR2

    一.安装前准备 1.内存及swap要求 至于swap如何添加,后文将提到 1 2 grep MemTotal /proc/meminfo grep SwapTotal /proc/meminfo 2. ...

  3. Golang template和junit xml report转html工具

    最近刚好有个task是要用Golang把Junit的XML格式report转换成HTML格式,便学习了Golang的template包. 基于template做的那个junit XML转HTML工具. ...

  4. 从iOS 11 UI Kit中谈谈iOS 11的新变化

    北京时间9月20日凌晨1点,iOS 11终于迎来了正式版的推送,相信各位小伙伴已经在第一时间进行了升级.iOS 11毫无疑问是一次大规模的系统更新,UI.系统内核.锁屏等多方面都进行了不同程度的改进. ...

  5. c# 解释器模式与sping.net表达式的结合应用(金融里经常需要用到公式,这个公式是抽象的需要自己解释)

    .代码 using Spring.Expressions; using System; using System.Collections.Generic; using System.Linq; usi ...

  6. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  7. ETL开发

    要进入开发阶段,了解不同的ETL产品. 整个ETL系统中,时间或更精确的,吞吐量是主要关心的内容.这种转换处理任务设计的主要目的归根结底是使得数据装载到展现表中最快并使得最终用户能快速的从这些表中得到 ...

  8. [label][JavaScript][The Defined Guide of JavaScript] 变量的作用域

    变量的作用域 一个变量的作用域(scope)是程序中定义这个变量的区域. 全局(global)变量的作用域(scope)是全局性的,即在JavaScript代码中,它处处都有定义.    而在函数之内 ...

  9. php的循环与引用的一个坑

    上代码 $arr = array( 'a'=> 'a11', 'b'=> 'b22', 'c'=> 'c33', ); foreach ($arr as $k=>&$v ...

  10. [Erlang18]教练!又发现Erlang Shell里面的神奇函数一只

      人嘛,总是想提高效率,创造更多的价值,同时也得到更多的选择空间.可一个人的精力,时间终归是有限的,减少自身重复或无意义工作就显得格外重要! 要么懂得授权,要么把重复的工作交给机器来做: 现实: 美 ...