Machine learning第6周编程作业
1.linearRegCostFunction:


function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
% h=(X*theta);
for i=1:m,
J=J+1/(2*m)*(h(i)-y(i))^2;
endfor
n= length(theta);
for i=2:n,
J=J+lambda/(2*m)*theta(i)^2;
endfor grad(1)=1/m*(h-y)'*X(:,1);
for i=2:n,
grad(i)=1/m*(h-y)'*X(:,i)+lambda/m*theta(i);
endfor % ========================================================================= grad = grad(:); end
2.learningCuvers

function [error_train, error_val] = ...
learningCurve(X, y, Xval, yval, lambda)
%LEARNINGCURVE Generates the train and cross validation set errors needed
%to plot a learning curve
% [error_train, error_val] = ...
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
% cross validation set errors for a learning curve. In particular,
% it returns two vectors of the same length - error_train and
% error_val. Then, error_train(i) contains the training error for
% i examples (and similarly for error_val(i)).
%
% In this function, you will compute the train and test errors for
% dataset sizes from 1 up to m. In practice, when working with larger
% datasets, you might want to do this in larger intervals.
% % Number of training examples
m = size(X, 1); % You need to return these values correctly
error_train = zeros(m, 1);
error_val = zeros(m, 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the cross validation errors in error_val.
% i.e., error_train(i) and
% error_val(i) should give you the errors
% obtained after training on i examples.
%
% Note: You should evaluate the training error on the first i training
% examples (i.e., X(1:i, :) and y(1:i)).
%
% For the cross-validation error, you should instead evaluate on
% the _entire_ cross validation set (Xval and yval).
%
% Note: If you are using your cost function (linearRegCostFunction)
% to compute the training and cross validation error, you should
% call the function with the lambda argument set to 0.
% Do note that you will still need to use lambda when running
% the training to obtain the theta parameters.
%
% Hint: You can loop over the examples with the following:
%
% for i = 1:m
% % Compute train/cross validation errors using training examples
% % X(1:i, :) and y(1:i), storing the result in
% % error_train(i) and error_val(i)
% ....
%
% end
% % ---------------------- Sample Solution ---------------------- for i=1:m,
theta=trainLinearReg(X(1:i,:),y(1:i),lambda);
error_train(i)=linearRegCostFunction(X(1:i,:),y(1:i),theta,0);
error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
endfor % ------------------------------------------------------------- % ========================================================================= end
3.polyFeatures

function [X_poly] = polyFeatures(X, p)
%POLYFEATURES Maps X (1D vector) into the p-th power
% [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
% maps each example into its polynomial features where
% X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p];
% % You need to return the following variables correctly.
X_poly = zeros(numel(X), p); % ====================== YOUR CODE HERE ======================
% Instructions: Given a vector X, return a matrix X_poly where the p-th
% column of X contains the values of X to the p-th power.
%
% for i=1:p,
X_poly(:,i)=(X.^i);
endfor % ========================================================================= end
4.ValidationCurve

function [lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval)
%VALIDATIONCURVE Generate the train and validation errors needed to
%plot a validation curve that we can use to select lambda
% [lambda_vec, error_train, error_val] = ...
% VALIDATIONCURVE(X, y, Xval, yval) returns the train
% and validation errors (in error_train, error_val)
% for different values of lambda. You are given the training set (X,
% y) and validation set (Xval, yval).
% % Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]'; % You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the validation errors in error_val. The
% vector lambda_vec contains the different lambda parameters
% to use for each calculation of the errors, i.e,
% error_train(i), and error_val(i) should give
% you the errors obtained after training with
% lambda = lambda_vec(i)
%
% Note: You can loop over lambda_vec with the following:
%
% for i = 1:length(lambda_vec)
% lambda = lambda_vec(i);
% % Compute train / val errors when training linear
% % regression with regularization parameter lambda
% % You should store the result in error_train(i)
% % and error_val(i)
% ....
%
% end
%
% for i=1:length(lambda_vec),
Lam=lambda_vec(i);
theta=trainLinearReg(X,y,Lam);
error_train(i)=linearRegCostFunction(X,y,theta,0);
error_val(i)=linearRegCostFunction(Xval,yval,theta,0);
endfor % ========================================================================= end
Machine learning第6周编程作业的更多相关文章
- Machine learning 第7周编程作业 SVM
1.Gaussian Kernel function sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis fun ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...
- Machine learning 第5周编程作业
1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...
- Machine learning第四周code 编程作业
1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业
做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
随机推荐
- AES加解密
AES加密类 <?php //php aes加密类 class AESMcrypt { public $iv = null; public $key = null; ; private $cip ...
- System.Web.HttpUtility VS System.Web.HttpServerUtility VS System.Net.WebUtility
HttpUtility 类作为 HttpServerUtility 类的内部使用,HttpServerUtility 通过System.Web.UI.Page.Server属性(WebForm)/Co ...
- S5PV210定时器
在S5PV210内部,一共有4类定时器件.这4类定时器件的功能.特征是不同的. 1.PWM定时器(1)这种是最常用的,平时所说的定时器一般指的是这个.像简单单片机(譬如51单片机)中的定时器也是这类. ...
- [转载]如何将word文档直接发布到新浪博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- PL/SQL Developer 窥探事务
一次登录代表一个连接 一个SQL Window 代表一个会话(session),有唯一的SID 事务(transaction) 由 insert .update 或者 delete 开启 由 comm ...
- 《Forward团队-爬虫豆瓣top250项目-开发文档》
码云地址:https://github.com/xyhcq/top250 模块功能:获取豆瓣top250网页的源代码,并分析. def getHTMLText(url,k): # 获取网页源代码 tr ...
- [转]快速入门系列--WebAPI--01基础
本文转自:http://www.cnblogs.com/wanliwang01/p/aspnet_webapi_base01.html ASP.NET MVC和WebAPI已经是.NET Web部分的 ...
- 洛谷P4312 [COCI 2009] OTOCI / 极地旅行社(link-cut-tree)
题目描述 不久之前,Mirko建立了一个旅行社,名叫“极地之梦”.这家旅行社在北极附近购买了N座冰岛,并且提供观光服务. 当地最受欢迎的当然是帝企鹅了,这些小家伙经常成群结队的游走在各个冰岛之间.Mi ...
- [label][Chrome-Extension] How to start Chrome Extension's development
Firstly , you should read these two pages. https://developer.chrome.com/extensions/overview https:/ ...
- 关于windows服务注册的问题
开发工具:VS2012 语言:C# 今天的工作内容是把wcf服务以windows服务的方式运行,由于之前没有做过windows服务,所有在网上找了些文章来看下,发现创建windows 服务是一件很简单 ...