n>=m,所以就变成了求

ϕ(m!)∗n!/m!

ϕ(m!)=m!∗(p−1)/p......

p为m!的素因子,即为m内的所有素数,问题就转化为了求

n!∗(p−1)/p......

只需要预处理出素数,阶乘,逆元即可

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 10000001
using namespace std;
bool bo[N+100];
long long prime[700000],fc[N+100],ans[N+100],ny[N+100];
int tot,T,n,m,p;
void init(){
fc[1]=1;
for(int i=2;i<=N;i++)fc[i]=(fc[i-1]*i)%p;
for(int i=2;i<=N;i++){
if(!bo[i])prime[++tot]=i;
for(int j=1;j<=tot&&i*prime[j]<=N;j++){
bo[i*prime[j]]=1;
if(!i%prime[j])break;
}
}
ny[1]=1;
for(int i=2;i<=N&&i<p;i++)ny[i]=(p-p/i)*ny[p%i]%p;
ans[1]=1;
for(int i=2;i<=N;i++){
if(!bo[i])ans[i]=ans[i-1]*(i-1)%p*ny[i%p]%p;
else ans[i]=ans[i-1];
}
}
int main(){
scanf("%d%d",&T,&p);
init();//printf("tot==%d\n",tot);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",(fc[n]*ans[m])%p);
}
return 0;
}

bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数的更多相关文章

  1. 【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数

    题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...

  2. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  3. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  4. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  5. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  6. bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...

  7. BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】

    题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论    对于两个正整数和,如果是的倍数,那么中与互素的数的个数为      本结论是很好证明的,因为中与互素的个数为,又知道, ...

  8. bzoj 2186: [Sdoi2008]沙拉公主的困惑

    #include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...

  9. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

随机推荐

  1. CAN数据格式-ASC

    Vector工具录制的数据,一般有ASC和BLF两种格式,本文介绍ASC. 1. ASC定义 ASC(ASCII)即文本文件,数据已可视化的文本存储. 2.ASC查看 通常情况下,用记事本就可以打开. ...

  2. quicksort(java版)

    相信大家都知道几种排序算法,比如说冒泡排序,选择排序,插入排序等等,这些个算法都不是很难,自己多多理解理解就能掌握了,而今天我们要谈的就是重头戏就是快速排序. 引用大牛的思想来对排序算法解释一下.(文 ...

  3. SDCC2013大会笔记整理

    2013-8-30 大会首日 百度移动云三大框架:Clouda.SiteApp.Appbuilder MBaaS解决高性能Server很难构建的问题. 百度开放云的区域运营服务于创业者 ------- ...

  4. Bootstrap在线引用css和js

    百度在线调用 <script src="http://libs.baidu.com/bootstrap/3.0.3/js/bootstrap.min.js"></ ...

  5. Unity pdb2mdb错误

    错误: D:\sandbox\sandbox_art\sandbox_artprj\Assets\Plugins\Sandbox\Editor>"C:\ProgramFiles/Uni ...

  6. DevOps之二 Maven的安装与配置

    CentOS7 安装Maven 一.安装Maven mkdir -p /usr/local/maven3wget http://mirrors.hust.edu.cn/apache/maven/mav ...

  7. 基于opencv下对视频的灰度变换,高斯滤波,canny边缘检测处理,同窗体显示并保存

    如题:使用opencv打开摄像头或视频文件,实时显示原始视频,将视频每一帧依次做灰度转换.高斯滤波.canny边缘检测处理(原始视频和这3个中间步骤处理结果分别在一个窗口显示),最后将边缘检测结果保存 ...

  8. 使用Selenium对新浪微博模拟登录

    Selenium的配置 在项目中引入Selenium库 下载chromedriver.exe 在项目代码中加入chromedriver位置的配置 使用Selenium Selenim语法 智能等待 隐 ...

  9. Spring HTTP状态码枚举值对照表

    使用Spring时总去查HTTP状态码对应的Spring枚举值的那篇代码,有点不方便,把代码拷贝出来统一替换格式做成了表格,放在这里,方便大家使用.(枚举类为HttpStatus) 枚举值 HTTP状 ...

  10. Java核心卷笔记(一)

    第三章Java基程序设计结构 1.注释 三种注释方式: // 注释单行 /* 内容 */ 注释单行 /** * 内容 */ 2. java 数据类型 Java数据类型可分为两种:基本数据类型和引用数据 ...