Description

  求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

  只有一个正整数n,n<=2000 000 000

Output

  整点个数

Sample Input

4

Sample Output

4

HINT

Source

Solution

  网上有一个很好的证明

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll; ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
} int main()
{
ll r, d, a, ans = ;
double b;
cin >> r;
for(d = (ll)(sqrt(2.0 * r) + 0.5); d; --d)
{
if( * r % d) continue;
for(a = (ll)(sqrt(1.0 * r / d) + 1e-); a; --a)
{
b = sqrt(2.0 * r / d - a * a);
if(b - (ll)b > 1e-) continue;
if(a != (ll)b && gcd(a, (ll)b) == ) ++ans;
}
if(d == * r / d) continue;
for(a = (ll)(sqrt(0.5 * d) + 1e-); a; --a)
{
b = sqrt(d - a * a);
if(b - (ll)b > 1e-) continue;
if(a != (ll)b && gcd(a, (ll)b) == ) ++ans;
}
}
cout << ans * << endl;
return ;
}

[BZOJ1041] [HAOI2008] 圆上的整点 (数学)的更多相关文章

  1. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  2. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  3. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  4. B1041 [HAOI2008]圆上的整点 数学

    这个题一开始看着没什么思路,但是一看题解就明白了不少,主要是数学证明,代码很好写. 贴个网址: hzwer 题干: 题目描述 求一个给定的圆(x^+y^=r^),在圆周上有多少个点的坐标是整数. 输入 ...

  5. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  6. BZOJ1041 HAOI2008圆上的整点(数论)

    求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...

  7. [bzoj1041][HAOI2008]圆上的整点

    我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...

  8. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  9. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

随机推荐

  1. APACHE服务器出现No input file specified.解决方案

    thinkcmf程序默认的.htaccess里面的规则: <IfModule mod_rewrite.c> RewriteEngine on RewriteCond %{REQUEST_F ...

  2. iOS 9 HTTPS 的配置

    方法有两种: (1)废话少说直接上图: (2)右击info.plist 文件 open as ->source code 在里面注入如下代码就行了(位置不固定,但要在指定的文件夹选项里) < ...

  3. PPPoE拨号流程

    PPPoE(Point to Point Protocol over Ethernet,基于以太网的点对点协议)的工作流程包含发现(Discovery)和会话(Session)两个阶段,发现阶段是无状 ...

  4. Mysql数据库建立索引的优缺点有哪些?

    索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息. 什么是索引 数据库索引好比是一本书前面的目录,能加快数据库的查询速度. 例如这样一个查询:select * ...

  5. TP3.2 中使用 PHPMailer 发送邮件

    第一步.添加PHPMailer类库 http://pan.baidu.com/s/1o7Zc7V0 第二步.添加发送邮件函数 在common目录中的公共函数文件加入函数 <?php /***** ...

  6. Java.lang.Comparable接口和Java.util.Comparator接口的区别

    Java的Comparator和Comparable当需要排序的集合或数组不是单纯的数字型时,通常可以使用Comparator或Comparable,以简单的方式实现对象排序或自定义排序. 1.Com ...

  7. Docker mongodb 3.4 分片 一主 一副 一仲 鉴权集群部署.

    非docker部署 为了避免过分冗余,并且在主节点挂了,还能顺利自动提升,所以加入仲裁节点 为什么要用docker部署,因为之前直接在虚拟机启动10个mongod 进程.多线程并发测试的时候,mong ...

  8. HTTP协议报文结构及示例

    HTTP基本架构 下面我们用一张简单的流程图来展示HTTP协议基本架构,以便大家先有个基本的了解. 9.png Web Client可以是浏览器.搜索引擎.机器人等等一切基于HTTP协议发起http请 ...

  9. linux RHCS集群 高可用web服务器

    RHCS集群,高可用服务器 高可用 红帽集群套件,提供高可用性,高可靠性,负载均衡,快速的从一个节点切换到另一个节点(最多16个节点)负载均衡 通过lvs提供负载均衡,lvs将负载通过负载分配策略,将 ...

  10. 使用axios以及http-proxy-middleware代理处理跨域的问题

    axios现在以及是尤大大推荐使用的了,官方不在维护vue-reresource. 由于是地第一次使用axios, 在使用过程中猜了很大的坑 首先我们使用vue-cli创建的项目, 访问接口肯定是跨域 ...