[BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
只有一个正整数n,n<=2000 000 000
Output
整点个数
Sample Input
Sample Output
HINT
Source
Solution
#include <bits/stdc++.h>
using namespace std;
typedef long long ll; ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
} int main()
{
ll r, d, a, ans = ;
double b;
cin >> r;
for(d = (ll)(sqrt(2.0 * r) + 0.5); d; --d)
{
if( * r % d) continue;
for(a = (ll)(sqrt(1.0 * r / d) + 1e-); a; --a)
{
b = sqrt(2.0 * r / d - a * a);
if(b - (ll)b > 1e-) continue;
if(a != (ll)b && gcd(a, (ll)b) == ) ++ans;
}
if(d == * r / d) continue;
for(a = (ll)(sqrt(0.5 * d) + 1e-); a; --a)
{
b = sqrt(d - a * a);
if(b - (ll)b > 1e-) continue;
if(a != (ll)b && gcd(a, (ll)b) == ) ++ans;
}
}
cout << ans * << endl;
return ;
}
[BZOJ1041] [HAOI2008] 圆上的整点 (数学)的更多相关文章
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- B1041 [HAOI2008]圆上的整点 数学
这个题一开始看着没什么思路,但是一看题解就明白了不少,主要是数学证明,代码很好写. 贴个网址: hzwer 题干: 题目描述 求一个给定的圆(x^+y^=r^),在圆周上有多少个点的坐标是整数. 输入 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
随机推荐
- APACHE服务器出现No input file specified.解决方案
thinkcmf程序默认的.htaccess里面的规则: <IfModule mod_rewrite.c> RewriteEngine on RewriteCond %{REQUEST_F ...
- iOS 9 HTTPS 的配置
方法有两种: (1)废话少说直接上图: (2)右击info.plist 文件 open as ->source code 在里面注入如下代码就行了(位置不固定,但要在指定的文件夹选项里) < ...
- PPPoE拨号流程
PPPoE(Point to Point Protocol over Ethernet,基于以太网的点对点协议)的工作流程包含发现(Discovery)和会话(Session)两个阶段,发现阶段是无状 ...
- Mysql数据库建立索引的优缺点有哪些?
索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息. 什么是索引 数据库索引好比是一本书前面的目录,能加快数据库的查询速度. 例如这样一个查询:select * ...
- TP3.2 中使用 PHPMailer 发送邮件
第一步.添加PHPMailer类库 http://pan.baidu.com/s/1o7Zc7V0 第二步.添加发送邮件函数 在common目录中的公共函数文件加入函数 <?php /***** ...
- Java.lang.Comparable接口和Java.util.Comparator接口的区别
Java的Comparator和Comparable当需要排序的集合或数组不是单纯的数字型时,通常可以使用Comparator或Comparable,以简单的方式实现对象排序或自定义排序. 1.Com ...
- Docker mongodb 3.4 分片 一主 一副 一仲 鉴权集群部署.
非docker部署 为了避免过分冗余,并且在主节点挂了,还能顺利自动提升,所以加入仲裁节点 为什么要用docker部署,因为之前直接在虚拟机启动10个mongod 进程.多线程并发测试的时候,mong ...
- HTTP协议报文结构及示例
HTTP基本架构 下面我们用一张简单的流程图来展示HTTP协议基本架构,以便大家先有个基本的了解. 9.png Web Client可以是浏览器.搜索引擎.机器人等等一切基于HTTP协议发起http请 ...
- linux RHCS集群 高可用web服务器
RHCS集群,高可用服务器 高可用 红帽集群套件,提供高可用性,高可靠性,负载均衡,快速的从一个节点切换到另一个节点(最多16个节点)负载均衡 通过lvs提供负载均衡,lvs将负载通过负载分配策略,将 ...
- 使用axios以及http-proxy-middleware代理处理跨域的问题
axios现在以及是尤大大推荐使用的了,官方不在维护vue-reresource. 由于是地第一次使用axios, 在使用过程中猜了很大的坑 首先我们使用vue-cli创建的项目, 访问接口肯定是跨域 ...