Spark SQL 之 DataFrame


转载请注明出处:http://www.cnblogs.com/BYRans/

概述(Overview)

Spark SQL是Spark的一个组件,用于结构化数据的计算。Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎。

DataFrames

DataFrame是一个分布式的数据集合,该数据集合以命名列的方式进行整合。DataFrame可以理解为关系数据库中的一张表,也可以理解为R/Python中的一个data frame。DataFrames可以通过多种数据构造,例如:结构化的数据文件、hive中的表、外部数据库、Spark计算过程中生成的RDD等。

DataFrame的API支持4种语言:Scala、Java、Python、R。

入口:SQLContext(Starting Point: SQLContext)

Spark SQL程序的主入口是SQLContext类或它的子类。创建一个基本的SQLContext,你只需要SparkContext,创建代码示例如下:

  • Scala
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
  • Java
JavaSparkContext sc = ...; // An existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

除了基本的SQLContext,也可以创建HiveContext。SQLContext和HiveContext区别与联系为:

  • SQLContext现在只支持SQL语法解析器(SQL-92语法)
  • HiveContext现在支持SQL语法解析器和HiveSQL语法解析器,默认为HiveSQL语法解析器,用户可以通过配置切换成SQL语法解析器,来运行HiveSQL不支持的语法。
  • 使用HiveContext可以使用Hive的UDF,读写Hive表数据等Hive操作。SQLContext不可以对Hive进行操作。
  • Spark SQL未来的版本会不断丰富SQLContext的功能,做到SQLContext和HiveContext的功能容和,最终可能两者会统一成一个Context

HiveContext包装了Hive的依赖包,把HiveContext单独拿出来,可以在部署基本的Spark的时候就不需要Hive的依赖包,需要使用HiveContext时再把Hive的各种依赖包加进来。

SQL的解析器可以通过配置spark.sql.dialect参数进行配置。在SQLContext中只能使用Spark SQL提供的”sql“解析器。在HiveContext中默认解析器为”hiveql“,也支持”sql“解析器。

创建DataFrames(Creating DataFrames)

使用SQLContext,spark应用程序(Application)可以通过RDD、Hive表、JSON格式数据等数据源创建DataFrames。下面是基于JSON文件创建DataFrame的示例:

  • Scala
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc) val df = sqlContext.read.json("examples/src/main/resources/people.json") // Displays the content of the DataFrame to stdout
df.show()
  • Java
JavaSparkContext sc = ...; // An existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc); DataFrame df = sqlContext.read().json("examples/src/main/resources/people.json"); // Displays the content of the DataFrame to stdout
df.show();

DataFrame操作(DataFrame Operations)

DataFrames支持Scala、Java和Python的操作接口。下面是Scala和Java的几个操作示例:

  • Scala
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc) // Create the DataFrame
val df = sqlContext.read.json("examples/src/main/resources/people.json") // Show the content of the DataFrame
df.show()
// age name
// null Michael
// 30 Andy
// 19 Justin // Print the schema in a tree format
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true) // Select only the "name" column
df.select("name").show()
// name
// Michael
// Andy
// Justin // Select everybody, but increment the age by 1
df.select(df("name"), df("age") + 1).show()
// name (age + 1)
// Michael null
// Andy 31
// Justin 20 // Select people older than 21
df.filter(df("age") > 21).show()
// age name
// 30 Andy // Count people by age
df.groupBy("age").count().show()
// age count
// null 1
// 19 1
// 30 1
  • Java
JavaSparkContext sc // An existing SparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc) // Create the DataFrame
DataFrame df = sqlContext.read().json("examples/src/main/resources/people.json"); // Show the content of the DataFrame
df.show();
// age name
// null Michael
// 30 Andy
// 19 Justin // Print the schema in a tree format
df.printSchema();
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true) // Select only the "name" column
df.select("name").show();
// name
// Michael
// Andy
// Justin // Select everybody, but increment the age by 1
df.select(df.col("name"), df.col("age").plus(1)).show();
// name (age + 1)
// Michael null
// Andy 31
// Justin 20 // Select people older than 21
df.filter(df.col("age").gt(21)).show();
// age name
// 30 Andy // Count people by age
df.groupBy("age").count().show();
// age count
// null 1
// 19 1
// 30 1

详细的DataFrame API请参考 API Documentation

除了简单列引用和表达式,DataFrames还有丰富的library,功能包括string操作、date操作、常见数学操作等。详细内容请参考 DataFrame Function Reference

运行SQL查询程序(Running SQL Queries Programmatically)

Spark Application可以使用SQLContext的sql()方法执行SQL查询操作,sql()方法返回的查询结果为DataFrame格式。代码如下:

  • Scala
val sqlContext = ...  // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
  • Java
SQLContext sqlContext = ...  // An existing SQLContext
DataFrame df = sqlContext.sql("SELECT * FROM table")

DataFrames与RDDs的相互转换(Interoperating with RDDs)

Spark SQL支持两种RDDs转换为DataFrames的方式:

  • 使用反射获取RDD内的Schema

    • 当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好。
  • 通过编程接口指定Schema
    • 通过Spark SQL的接口创建RDD的Schema,这种方式会让代码比较冗长。
    • 这种方法的好处是,在运行时才知道数据的列以及列的类型的情况下,可以动态生成Schema

使用反射获取Schema(Inferring the Schema Using Reflection)

Spark SQL支持将JavaBean的RDD自动转换成DataFrame。通过反射获取Bean的基本信息,依据Bean的信息定义Schema。当前Spark SQL版本(Spark 1.5.2)不支持嵌套的JavaBeans和复杂数据类型(如:List、Array)。创建一个实现Serializable接口包含所有属性getters和setters的类来创建一个JavaBean。通过调用createDataFrame并提供JavaBean的Class object,指定一个Schema给一个RDD。示例如下:

public static class Person implements Serializable {
private String name;
private int age; public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
}
}
// sc is an existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc); // Load a text file and convert each line to a JavaBean.
JavaRDD<Person> people = sc.textFile("examples/src/main/resources/people.txt").map(
new Function<String, Person>() {
public Person call(String line) throws Exception {
String[] parts = line.split(","); Person person = new Person();
person.setName(parts[0]);
person.setAge(Integer.parseInt(parts[1].trim())); return person;
}
}); // Apply a schema to an RDD of JavaBeans and register it as a table.
DataFrame schemaPeople = sqlContext.createDataFrame(people, Person.class);
schemaPeople.registerTempTable("people"); // SQL can be run over RDDs that have been registered as tables.
DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") // The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() {
public String call(Row row) {
return "Name: " + row.getString(0);
}
}).collect();

通过编程接口指定Schema(Programmatically Specifying the Schema)

当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:

  • 从原来的RDD创建一个Row格式的RDD
  • 创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema
  • 通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema

示例如下:

import org.apache.spark.api.java.function.Function;
// Import factory methods provided by DataTypes.
import org.apache.spark.sql.types.DataTypes;
// Import StructType and StructField
import org.apache.spark.sql.types.StructType;
import org.apache.spark.sql.types.StructField;
// Import Row.
import org.apache.spark.sql.Row;
// Import RowFactory.
import org.apache.spark.sql.RowFactory; // sc is an existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc); // Load a text file and convert each line to a JavaBean.
JavaRDD<String> people = sc.textFile("examples/src/main/resources/people.txt"); // The schema is encoded in a string
String schemaString = "name age"; // Generate the schema based on the string of schema
List<StructField> fields = new ArrayList<StructField>();
for (String fieldName: schemaString.split(" ")) {
fields.add(DataTypes.createStructField(fieldName, DataTypes.StringType, true));
}
StructType schema = DataTypes.createStructType(fields); // Convert records of the RDD (people) to Rows.
JavaRDD<Row> rowRDD = people.map(
new Function<String, Row>() {
public Row call(String record) throws Exception {
String[] fields = record.split(",");
return RowFactory.create(fields[0], fields[1].trim());
}
}); // Apply the schema to the RDD.
DataFrame peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema); // Register the DataFrame as a table.
peopleDataFrame.registerTempTable("people"); // SQL can be run over RDDs that have been registered as tables.
DataFrame results = sqlContext.sql("SELECT name FROM people"); // The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
List<String> names = results.javaRDD().map(new Function<Row, String>() {
public String call(Row row) {
return "Name: " + row.getString(0);
}
}).collect();

Spark SQL 之 DataFrame的更多相关文章

  1. spark结构化数据处理:Spark SQL、DataFrame和Dataset

    本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但 ...

  2. Spark SQL、DataFrame和Dataset——转载

    转载自:  Spark SQL.DataFrame和Datase

  3. 转】Spark SQL 之 DataFrame

    原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...

  4. Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)

    概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...

  5. Spark SQL and DataFrame Guide(1.4.1)——之DataFrames

    Spark SQL是处理结构化数据的Spark模块.它提供了DataFrames这样的编程抽象.同一时候也能够作为分布式SQL查询引擎使用. DataFrames DataFrame是一个带有列名的分 ...

  6. Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset

    一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...

  7. Spark 系列(八)—— Spark SQL 之 DataFrame 和 Dataset

    一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 Da ...

  8. spark sql 创建DataFrame

    SQLContext是创建DataFrame和执行SQL语句的入口 通过RDD结合case class转换为DataFrame 1.准备:hdfs上提交一个文件,schema为id name age, ...

  9. Spark SQL 之 Data Sources

    #Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...

随机推荐

  1. iOS开发入门知识归纳

    一.iOS-C基础 二.iOS-Objective-C基础 三.iOS-Swift编程 三.iOS开发简单介绍 四.iOS-UI基础 1.UI控件介绍 2.UI布局-屏幕适配 五.iOS-多线程基础 ...

  2. C# windows服务制作(包括安装及卸载)

    开篇语 因工作内容需要做一个windows服务,此前并没有相关经验,所以做了一个demo来跑跑这个梗(高手跳过,需要的来踩)- 效果如下:打开服务,可以找到我们新增的一个windows服务,这个dem ...

  3. 微信小程序(微信应用号)开发ide安装解决方法

    这两天整个技术圈都炸锅了,微信小程序(微信应用号)发布内测,首批200家收到邀请,但是没受邀请的同学,也不用担心,下面介绍一下解决方法. 首先需要下载ide,昨天只需要下载0.9版本的编辑器并替换文件 ...

  4. ASP.NET 截获服务器生成的将要发送到客户端的html的方法

    有时候我们需要在将服务器端生成的html发送带客户端之前对这些html进行操作,比如生成静态html加之保存.改变生成的html中的某些内容等等,那么久可以通过如下的方案解决. 我总结了两种方式,个人 ...

  5. unsafe

    今天无意中发现C#这种完全面向对象的高级语言中也可以用不安全的指针类型,即要用到unsafe关键字.在公共语言运行库 (CLR) 中,不安全代码是指无法验证的代码.C# 中的不安全代码不一定是危险的, ...

  6. 详解javascript的类

    前言 生活有度,人生添寿. 原文地址:详解javascript的类 博主博客地址:Damonare的个人博客 Javascript从当初的一个"弹窗语言",一步步发展成为现在前后端 ...

  7. [Asp.net 5] Caching-缓存架构与源码分析

    首先奉献caching的开源地址[微软源码] 1.工程架构 为了提高程序效率,我们经常将一些不频繁修改,但是使用了还很大的数据进行缓存.尤其是互联网产品,缓存可以说是提升效率优化第一利器.微软为我们实 ...

  8. vcredist_x64.exe vcredist_x86.exe 静默安装方法收集

    vcredist_x64.exe /install /quiet /norestart 更多方法参考如下: http://www.cnblogs.com/lidabo/archive/2013/01/ ...

  9. 来玩Play框架02 响应

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我上一章总结了Play框架的基本使用.这一章里,我将修改和增加响应. HTTP协议 ...

  10. EF 添加方式比较

    using System; using System.Collections.Generic; using DBAccess.Models; using EntityFramework.BulkIns ...