P1031 均分纸牌

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4 堆纸牌数分别为:

①9②8③17④6

移动3次可达到目的:

从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入输出格式

输入格式:

键盘输入文件名。文件格式:

N(N 堆纸牌,1 <= N <= 100)

A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出格式:

输出至屏幕。格式为:

所有堆均达到相等时的最少移动次数。

输入输出样例

输入样例#1:

4
9 8 17 6
输出样例#1:

3
/*
先算平均数(目标纸牌数),然后固定其中的一头(1和N都可以),从一个方向移动牌,拿走和拿来都算是一次
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int main(){
int n;
cin>>n;
int s=;
int a[];
memset(a,,sizeof(a));
for (int i=;i<=n;i++){
cin>>a[i];
s+=a[i];
}
s=s/n;
for (int i=;i<=n;i++)a[i]-=s;
s=;
int x=;
for (int i=;i<n;i++){
a[i]=a[i]+x;
if (a[i]==) {x=;continue;}
if (a[i]<) {x=a[i];a[i]=;s++;}
if (a[i]>) {x=a[i];a[i]=;s++;}
}
cout<<s;
return ;
}

洛谷P1031 均分纸牌的更多相关文章

  1. 洛谷 P1031 均分纸牌

    P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...

  2. 洛谷 P1031 均分纸牌 Label:续命模拟QAQ

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  3. 洛谷 P1031 均分纸牌【交叉模拟】

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  4. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  5. 洛谷——P1031 均分纸牌

    https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...

  6. (Java实现) 洛谷 P1031 均分纸牌

    题目描述 有NN堆纸牌,编号分别为 1,2,-,N1,2,-,N.每堆上有若干张,但纸牌总数必为NN的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为11堆上取的纸牌,只能移到编号为 ...

  7. 洛谷P1368 均分纸牌(加强版)

    P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...

  8. 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]

    P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...

  9. 【洛谷p1031】均分纸牌

    [博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...

随机推荐

  1. VIM中使用tab键自动完成(vim tab键自动补全 )插件supertab

    supertab.vmb 这个插件好好用, Tab自动补全 http://www.vim.org/scripts/script.php?script_id=1643 安装步骤: 1.下载 supert ...

  2. Java for LeetCode 087 Scramble String

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  3. swift中反向循环

    First of all, protocol extensions change how reverse is used: for i in (1...5).reverse() { print(i) ...

  4. 私有 npm 仓库的搭建

    cnpm 是企业内部搭建 npm 镜像和私有 npm 仓库的开源方案,当企业业务逻辑相关的模块可能不适合开源.这部分私有的模块就可以放在私有 npm 仓库中来管理和维护. 以下为搭建私有 npm 的详 ...

  5. koa-bodyparser返回413状态码的问题

    413 Request Entity Too Large(请求实体太大) 数日前,我用 node.js 写的一个日志服务抛出了这个状态码-- 自己写的服务抛出了一个自己都不认识的状态码,这是最气的!( ...

  6. GDB调试core文件(2)

    使用gdb和core dump迅速定位段错误 关键字:gdb.段错误.core dump 一.什么是core dump core:内存.核心的意思: dump:抛出,扔出: core dump:前提: ...

  7. BZOJ 3990 [SDOI2015]排序

    题解: 首先很容易看出各个操作是互不影响的,即对于一个合法的操作序列,我们可以任意交换两个操作的位置而不影响合法性. 因此我们可以忽略操作先后的影响,只考虑这个操作是否会出现在操作序列中. 如果用2n ...

  8. echarts如何显示在页面上

    echarts如何显示在页面上 1.引入echarts的相关.js文件 <script src="js/echarts.min.js"></script> ...

  9. Kbuntu16.04利用快捷键调用终端Konsole

    之前用其他linux,可以按ctrl alt t三个键快速调用终端.但是我用Kbuntu16.04这个版本的时候却不行.于是跑去自定义了一下下. System Settings  -->  Wo ...

  10. html5--1.16 内联框架

    html5--1.16 内联框架 学习要点: 1.iframe内联框架2.综合实例1 1.iframe内联框架 1.iframe元素用来在文档中添加一个内联框架. 2.iframe为body元素的子元 ...