Network Wars


Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge

Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important --- they are connected to global world network and president palace network respectively.

The server connected to the president palace network has number 1, and the server connected to the global world network has number n.

Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.

To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company's main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.

That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.

Input

There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~--- each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed107.

Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.

There is an empty line between each cases.

Output

First output k --- the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.

Example

Input Output
6 8
1 2 3
1 3 3
2 4 2
2 5 2
3 4 2
3 5 2
5 6 3
4 6 3
4
3 4 5 6
4 5
1 2 2
1 3 2
2 3 1
2 4 2
3 4 2
3
1 2 3

题目链接:ZOJ 2676

此题叫我们求$\Sigma w_{ei} \over |E|$的最小值,其中所有的边均在S-T的割中,可以发现当${\Sigma w_{ei} \over |E|}<r$时,存在$r'={\Sigma w_{ei} \over |E|}$作为更优的r,那我们写成$\Sigma w_{ei} - r*|E|<0$,存在一个左边的结果使得等式成立,即找到左边式子的最小值小于0即可,观察左边的式子,可以化简成$\Sigma (w_{ei}-r)<0$,然后边集e是一个割,又要求这个割集的最小值,那显然就是求s-t的最小割即可,先用二分求出最佳的比例,然后在最后剩下的那个残余网络中找出割集。

代码:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 110;
const int M = 410;
const double eps = 1e-6;
struct edge
{
int to, nxt;
double cap;
edge() {}
edge(int _to, int _nxt, double _cap): to(_to), nxt(_nxt), cap(_cap) {}
};
struct Node
{
int u, v;
double cap;
};
Node e[M];
edge E[M << 1];
int head[N], tot;
int d[N];
int use[M]; void init()
{
CLR(head, -1);
tot = 0;
CLR(use, 0);
}
inline void add(int s, int t, double cap)
{
E[tot] = edge(t, head[s], cap);
head[s] = tot++;
E[tot] = edge(s, head[t], cap);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
double dfs(int s, int t, double f)
{
if (s == t || !f)
return f;
double ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
double df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
f -= df;
ret += df;
if (!f)
break;
}
}
}
if (!ret)
d[s] = -1;
return ret;
}
double dinic(int s, int t)
{
double ans = 0;
while (bfs(s, t))
ans += dfs(s, t, INF);
return ans;
}
double Mincut(int n, int m, double r)
{
int i;
init();
double ret = 0;
for (i = 1; i <= m; ++i)
{
if (e[i].cap < r)
{
ret += e[i].cap - r;
use[i] = 1;
}
else
add(e[i].u, e[i].v, e[i].cap - r);
}
return ret + dinic(1, n);
}
int main(void)
{
int n, m, i;
while (~scanf("%d%d", &n, &m))
{
for (i = 1; i <= m; ++i)
scanf("%d%d%lf", &e[i].u, &e[i].v, &e[i].cap);
double Rat = 0, L = 0, R = 400.0 / 3 * 1e7;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (Mincut(n, m, mid) < 0)
{
R = mid;
Rat = mid;
}
else
L = mid;
}
vector<int>ans;
for (i = 1; i <= m; ++i)
{
if ((d[e[i].u]!=-1)^(d[e[i].v]!=-1))
use[i] = 1;
if (use[i])
ans.push_back(i);
}
int sz = ans.size();
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d%c", ans[i], " \n"[i == sz - 1]);
}
return 0;
}

ZOJ 2676 Network Wars(最优比例最小割)的更多相关文章

  1. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  2. HDU 2676 Network Wars 01分数规划,最小割 难度:4

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...

  3. ZOJ 2676 Network Wars[01分数规划]

    ZOJ Problem Set - 2676 Network Wars Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special J ...

  4. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  5. ZOJ 2676 Network Wars(网络流+分数规划)

    传送门 题意:求无向图割集中平均边权最小的集合. 论文<最小割模型在信息学竞赛中的应用>原题. 分数规划.每一条边取上的代价为1. #include <bits/stdc++.h&g ...

  6. ZJU 2676 Network Wars

    Network Wars Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original I ...

  7. BZOJ 3774: 最优选择( 最小割 )

    最小割...二分染色然后把颜色不同的点的源汇反过来..然后就可以做了. 某个点(x,y): S->Id(x,y)(回报), Id(x,y)->T(代价), Id(i,j)&& ...

  8. 【BZOJ3774】最优选择 最小割

    [BZOJ3774]最优选择 Description 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择 ...

  9. BZOJ 3774 最优选择 (最小割+二分图)

    题面传送门 题目大意:给你一个网格图,每个格子都有$a_{ij}$的代价和$b_{ij}$的回报,对于格子$ij$,想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通 ...

随机推荐

  1. 3203 数组做函数参数----排序函数--C语言版

    3203: 数组做函数参数----排序函数--C语言版 时间限制: 1 Sec  内存限制: 128 MB提交: 253  解决: 151[提交][状态][讨论版][命题人:smallgyy] 题目描 ...

  2. file - 确定文件类型

    总览 file [ -bcnsvzL ] [ -f 命名文件 ] [ -m 幻数文件 ] file ... 描述 本手册页说明了3.27版本 file 命令的使用. File 命令试图检查每个参数以判 ...

  3. rem适配方案

    页面布局单位计算 一般有两大类:绝对长度单位和相对长度单位 绝对长度单位: px 像素:是显示屏上显示的每一个小点,为显示的最小单位 in 英寸,1in = 96px cm 厘米,1cm = 37.8 ...

  4. MySQL数据库的下载安装

    目录 一.概述 二.MySQL安装 三.安装成功验证 四.NavicatforMySQL下载及使用 一.MySQL下载 MySQL版本:5.7.17 下载地址:https://dev.mysql.co ...

  5. 十一、Shell 输入/输出重定向

    Shell 输入/输出重定向 大多数 UNIX 系统命令从你的终端接受输入并将所产生的输出发送回​​到您的终端.一个命令通常从一个叫标准输入的地方读取输入,默认情况下,这恰好是你的终端.同样,一个命令 ...

  6. 【Ecshop】后台菜单与权限管理

    主要php文件: 1,admin/includes/inc_menu.php ECSHOP管理中心菜单数组--配置菜单组及URL 2,languages/zh_cn/admin/common.php  ...

  7. matplotlib(一)——matplotlib横轴坐标密集字符覆盖

    一.问题描述 具体问题是: 用python库matplotlib进行数据的图表展示: 图表展示图形横坐标有将近100个自定义值需要显示: 保存矢量图(svg),保存后发现横坐标过于密集,坐标值之间有覆 ...

  8. day09-函数讲解

    1.如何定义一个函数 s = '华为加油a' def s_len(): i = 0 for k in s: i += 1 print(i) s_len() 这个函数的功能就是输出字符串的长度.但是他只 ...

  9. Zookeeper协调服务系统·ELK日志管理系统简介

    Zookeeper协调服务系统: 说明:它分布式系统中的协调服务系统,是Hadoop下的一个子项目,可提供的服务有:名字服务.配置服务.分布式同步.组服务等. 3个角色:Leaders.Follow. ...

  10. BFS:HDU2597-Dating with girls(2) (分时间标记状态)

    Dating with girls(2) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...