【BZOJ4000】[TJOI2015]棋盘(矩阵快速幂,动态规划)
【BZOJ4000】[TJOI2015]棋盘(矩阵快速幂,动态规划)
题面
题解
发现所有的东西都是从\(0\)开始编号的,所以状压只需要压一行就行了。
然后就可以随意矩乘了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define uint unsigned int
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,P,k,N;
struct Matrix
{
uint s[64][64];
void clear(){memset(s,0,sizeof(s));}
void init(){clear();for(int i=0;i<N;++i)s[i][i]=1;}
uint*operator[](int x){return s[x];}
}T;
Matrix operator*(Matrix a,Matrix b)
{
Matrix c;c.clear();
for(int i=0;i<N;++i)
for(int j=0;j<N;++j)
for(int k=0;k<N;++k)
c[i][j]+=a[i][k]*b[k][j];
return c;
}
Matrix fpow(Matrix a,int b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int lim[3],forbid[3][64],zt[64];
int main()
{
n=read();m=read();P=read();k=read();
for(int i=0;i<3;++i)
for(int j=0;j<P;++j)lim[i]|=read()<<j;
lim[1]^=1<<k;N=1<<m;
for(int i=0;i<N;++i)
for(int j=0;j<m;++j)
if(i&(1<<j))
{
forbid[0][i]|=(j<k)?lim[0]>>(k-j):lim[0]<<(j-k);
forbid[1][i]|=(j<k)?lim[1]>>(k-j):lim[1]<<(j-k);
forbid[2][i]|=(j<k)?lim[2]>>(k-j):lim[2]<<(j-k);
}
int tmp=0;
for(int i=0;i<N;++i)
if(!(i&forbid[1][i]))zt[tmp++]=i;
N=tmp;
for(int i=0;i<N;++i)
for(int j=0;j<N;++j)
if(((forbid[2][zt[i]]&zt[j])==0)&&((forbid[0][zt[j]]&zt[i])==0))
++T[i][j];
T=fpow(T,n);
uint ans=0;
for(int i=0;i<N;++i)ans+=T[0][i];
printf("%u\n",ans);
return 0;
}
【BZOJ4000】[TJOI2015]棋盘(矩阵快速幂,动态规划)的更多相关文章
- 【BZOJ4000】【LOJ2104】【TJOI2015】棋盘 (状压dp + 矩阵快速幂)
Description 有一个\(~n~\)行\(~m~\)列的棋盘,棋盘上可以放很多棋子,每个棋子的攻击范围有\(~3~\)行\(~p~\)列.用一个\(~3 \times p~\)的矩阵给出了 ...
- BZOJ4000 TJOI2015棋盘(状压dp+矩阵快速幂)
显然每一行棋子的某种放法是否合法只与上一行有关,状压起来即可.然后n稍微有点大,矩阵快速幂即可. #include<iostream> #include<cstdio> #in ...
- 【BZOJ2004】公交线路(动态规划,状态压缩,矩阵快速幂)
[BZOJ2004]公交线路(动态规划,状态压缩,矩阵快速幂) 题面 BZOJ 题解 看到\(k,p\)这么小 不难想到状态压缩 看到\(n\)这么大,不难想到矩阵快速幂 那么,我们来考虑朴素的\(d ...
- 【BZOJ1009】GT考试(KMP算法,矩阵快速幂,动态规划)
[BZOJ1009]GT考试(KMP算法,矩阵快速幂,动态规划) 题面 BZOJ 题解 看到这个题目 化简一下题意 长度为\(n\)的,由\(0-9\)组成的字符串中 不含串\(s\)的串的数量有几个 ...
- 【CF1151F】Sonya and Informatics(动态规划,矩阵快速幂)
[CF1151F]Sonya and Informatics(动态规划,矩阵快速幂) 题面 CF 题解 考虑一个暴力\(dp\).假设有\(m\)个\(0\),\(n-m\)个\(1\).设\(f[i ...
- 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
[BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...
- 【BZOJ4832】抵制克苏恩(矩阵快速幂,动态规划)
[BZOJ4832]抵制克苏恩(矩阵快速幂,动态规划) 题面 BZOJ 题解 一模一样 #include<iostream> #include<cstdio> using na ...
- 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
随机推荐
- 学了两天 react,乱讲一下学习思路,顺便弄了一个脚手架
之前一直用 vue 做一些小项目,最近接触了一个项目是用 react 做前端,虽然本身是做后端开发的,但是前端还是要了解一点的. 现在的项目基本上都是前后端分离的,后端就先不提了.前端的框架也是层出不 ...
- 关于获取URL中传值的解决方法--升级版
这次页面之间的传值是升级版本,为什么是升级版本呢,因为这次页面的传值不一样了.大家可以看一下我原来的文章<关于获取URL中传值的解决方法> 其实上次就已经比较清楚的介绍了页面之间的传值,但 ...
- 关于computed使用时报no-side-effects-in-computed-properties错误
不要在计算属性内直接修改data里面的数据,eslint会报 no-side-effects-in-computed-properties 错误,如果非要改可以写在一个函数里,然后在计算属性里调用该函 ...
- C语言经典算法 - 多维矩阵转一维矩阵的代码
下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...
- vue的表单编辑删除,保存取消功能
过年回来第一篇博客,可能说的不是很清楚,而且心情可能也不是特别的high,虽然今天是元宵,我还在办公室11.30在加班,但就是想把写过的代码记下来,怕以后可能真的忘了.(心将塞未塞,欲塞未满) VUE ...
- git错误--ssh: Could not resolve hostname ssh.github.com: Name or service not known--解决方式
错误如下: git push origin ssh: Could not resolve hostname ssh.github.com: Name or service not known fata ...
- Docker JDK镜像
Docker jdk镜像 说明 使用alpine-glibc作为基础镜像 JAVA JDK/JRE以1.8为基准 下载文件 1.下载JDK/JRE压缩包. jre-8u201-linux-x64.ta ...
- 记MVC学习过程中一次传参到View时遇到的错误
在跟着 <PRO ASP.NET MVC5>一书进行第七章的练习的时候遇到了以上问题, 当遇到此类问题的时候应该先检查方法传输和其视图接受的数据类型是否一致, 大多时候都是因为两者数据类型 ...
- xtrabackup备份mysql数据库方法
1.安装 xtrabackup 工具包 下载percona yum源 https://www.percona.com/redir/downloads/percona-release/redhat/pe ...
- 数据库MySQL和Redis实践
1.关于数据库设计的那些事 2.MySQL 3.Redis