正解:网络流

解题报告:

传送门$QwQ$

题目大意其实就说有一个$n$个节点的有向完全图,然后部分边的方向已经给定了,要求确定所有边的方向使三元环数目有$max$.这里三元环的定义是说三条边的方向一致,即同为顺逆时针$QwQ$

话说这种三元环问题通常就是考虑点的度数?考虑下如果是非三元环一定是有一个入度为2的点,考虑枚举这种点,那就有$as=\binom{n}{3}-\sum\binom{in_i}{2}=\frac{n(n-1)(n-2)}{6}-\sum\frac{in_i^2-in_i}{2}=\frac{n(n-1)(n-2)}{6}+\frac{n(n-1)}{2}-\sum\frac{in_i^2}{2}$,所以现在就是要最小化这个,$\sum\frac{in_i^2}{2}$

这时候要用到费用递增$QwQ$,因为之前都没安利过这个姿势的样子所以大概港下,,,也不会很详细港的因为懒$bushi$

就对于某条边,若费用是关于流量的一个函数,且满足斜率单调增,可以考虑拆边,第$x$条边就$f_{x}-f_{x-1}$,然后就欧克克辣$QwQ$

所以这里一样的嘛,由前面得$f(x)=x^2$显然递增,所以像前面说的那样拆边就好$QwQ$

欧克最后总结下怎么建图$QwQ$?考虑建一排点表示未定向的边,再建一排点表示所有点,于是就$S$向边连流量为1费用为0的边,边向端点连流量为1费用为0的边,各点向$T$连边如上方法

然后就做完辣?

$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define fy(i) edge[i].fy
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=1e4+;
int head[N],ed_cnt=-,vis[N],S,T,fr_ed[N],fr_nod[N],dis[N],g[N][N],du[N],num[N],nod_cnt,n,as;
struct ed{int to,nxt,wei,fy;}edge[N<<];
struct node{int x,y;}nod[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z,ri p)
{edge[++ed_cnt]=(ed){x,head[y],z,p};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],,p};head[x]=ed_cnt;}
il bool spfa()
{
queue<int>Q;Q.push(S);memset(vis,,sizeof(vis));vis[S]=;memset(dis,,sizeof(dis));dis[S]=;
while(!Q.empty())
{
ri nw=Q.front();Q.pop();vis[nw]=;
e(i,nw)
if(w(i) && fy(i)+dis[nw]<dis[t(i)])
{dis[t(i)]=dis[nw]+fy(i),fr_ed[t(i)]=i,fr_nod[t(i)]=nw;if(!vis[t(i)])Q.push(t(i)),vis[t(i)]=;}
}
if(dis[T]==dis[])return ;
ri flow=dis[T+];
for(ri i=T;i!=S;i=fr_nod[i])flow=min(flow,w(fr_ed[i]));
for(ri i=T;i!=S;i=fr_nod[i])w(fr_ed[i])-=flow,w(fr_ed[i]^)+=flow;as+=dis[T]*flow;
return ;
} int main()
{
memset(head,-,sizeof(head));n=read();S=n+,T=nod_cnt=n+;
rp(i,,n)
{
rp(j,,n)
{
g[i][j]=read();
if(g[i][j]== && i<j)
{nod[++nod_cnt]=(node){i,j};ad(nod_cnt,S,,);ad(i,nod_cnt,,);ad(j,nod_cnt,,);++num[i];++num[j];}
else du[i]+=g[i][j];
}
}
rp(i,,n){as+=du[i]*du[i];rp(j,,num[i])ad(i,T,,*(du[i]+j)-);}
while(spfa());
printf("%d\n",n*(n-)*(n-)/-(as-n*(n-)/)/);
rp(i,n+,nod_cnt)
{
ri tmp;e(j,i)if(t(j)!=S && !w(j)){tmp=t(j);break;}
if(tmp==nod[i].x)g[nod[i].x][nod[i].y]=,g[nod[i].y][nod[i].x]=;
else g[nod[i].x][nod[i].y]=,g[nod[i].y][nod[i].x]=;
}
rp(i,,n){rp(j,,n)printf("%d ",g[i][j]);printf("\n");}
return ;
}

没写完,不想写了$kk$,先存着$kk$

洛谷$P4249\ [WC2007]$剪刀石头布 网络流的更多相关文章

  1. 洛谷P1251 餐巾(网络流)

    P1251 餐巾 15通过 95提交 题目提供者该用户不存在 标签网络流贪心 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 为什么我全部10个测试点都对… 题目描述 一个餐厅在相继的N天里 ...

  2. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

  3. P1219 八皇后 洛谷

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  4. 洛谷$P4177\ [CEOI2008]\ order$ 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...

  5. 洛谷$P2050\ [NOI2012]$美食节 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂开始看到$jio$得,哇长得好像上一题嗷$QwQ$ 然后仔细康康数据范围,发现,哇好像要几万个点,,,显然就$GG$了 但感$jio$思路方向好对的亚子? ...

  6. 洛谷$P2053\ [SCOI2007]$修车 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 一个很妙的建图,,,说实话我麻油想到$QwQ$ 考虑对每个工人建$n$个点,表示这是他修的倒数第$i$辆车,就可以算出影响是$t\cdot i$,然后对每辆 ...

  7. 洛谷$P3308\ [SDOI2014]LIS$ 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 恩先不考虑关于那个附加属性的限制,考虑这题怎么做? 首先这题从名字开始就让人忍不住联想起网络流24题里的那个最长不下降子序列?于是同样考虑预处理一个$f$呗 ...

  8. 洛谷$P2046\ [NOI2010]$海拔 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门$QwQ$ $umm$之前省选前集训的时候叶佬考过?然而这和我依然不会做有什么关系呢$kk$ 昂这题首先要两个结论?第一个是说每个位置的海拔一定是0/1,还一个 ...

  9. 洛谷$P3227\ [HNOI2013]$切糕 网络流

    正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...

随机推荐

  1. IDEA 通过数据库生成entity实体类

    IDEA利用数据库生成entity类教程 1.在左上角有一个View 选项 2. 然后选择 TOOL Windows 3. 然后选择Database然后会弹出一个窗口 4.选择+号 5.选择data ...

  2. 一、JVM内存区域组成

    一.JVM内存区域组成  java把内存分四种:  1.栈区(stack segment)— 由编译器自动分配释放,存放函数的参数值,局部变量的值等,具体方法执行结束之后,系统自动释放内存资源  2. ...

  3. 重置Mysql自增列的开始序号

    ALTER TABLE  TableName AUTO_INCREMENT = 5; 代表重新从5开始(包括5)

  4. Bert系列(三)——源码解读之Pre-train

    https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现 ...

  5. [kuangbin带你飞]专题九 连通图B - Network UVA - 315

    判断割点的性质: 如果点y满足 low[y]>=dfn[x] 且不是根节点 或者是根节点,满足上述式子的有两个及其以上. 就是割点 如果是起点,那么至少需要两个子节点满足上述条件,因为它是根节点 ...

  6. js获取盒子scrollTop

    前言:如何单纯获取某个盒子的滚动值-->>  (属性可写可读) var scroll = document.getElementById('box').scrollTop;//获取盒子的滚 ...

  7. laravel 常用文档

    [ Laravel 5.6 文档 ] 快速入门 —— 目录结构  laravel学院 http://laravelacademy.org/post/8657.html Laravel 的缓存系统    ...

  8. Mysql怎样控制replace替换的次数?

    我想把“ABC是ABC”替换成“123是ABC”,也就是找出第一个ABC替换成123,MYSQL命令应该怎么写? UPDATE data SET body=REPLACE(body, 'ABC', ' ...

  9. Python--day37--守护进程和几个常用的方法

    1,p.daemon = True #设置子进程为守护进程 #守护进程会随着主进程的代码执行完毕 而结束 #子进程 --> 守护进程 import time from multiprocessi ...

  10. Mockito -- 入门篇

    Mockito是一种mock工具/框架.我理解EasyMock有点过时了,Mockito是现在比较流行的. 什么是mock?说的直白一点,大家都知道unit test应该是尽可能独立的.对一个clas ...