[LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]
题意
分析
- 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案。
- 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法的方案数。
- 然后就和 BZOJ4766文艺计算姬 一致了,假设两边点集大小分别为 \(n,m\) ,生成树个数就是 \(n^{m-1}m^{n-1}\)
- 证明可以考虑 prufer 序列还原树时的操作,将所有点先放入 set 中,每次将没有出现在序列中的编号最小的点拿出来和 prufer 序列开头的点连边,并将这两个元素对应删除直到 set 的大小为2。对于选择的点集相同,出现顺序不同的两个方案,一定会保证每个集合的点所占据的位置是一个固定的集合,证明如下:
假设我们得到了两个点集相同的 prufer 序列:
\(S_1\ S_2\ T_1\ T_2\ S_3\)
\(S_1\ S_2\ S_3\ T_2\ T_1\)上述例子中的第三个位置,我们的 set 在前 3 个位置取出的点时相同的,\(T_1,S_3\) 不属于同一个点集,不可能都可以和 set 取出的第三个元素连边。
- 所以答案就是 \(k^{n-k-1}(n-k)^{k-1}\binom{n-1}{k-1}\)
代码
[LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]的更多相关文章
- LOJ#6044. 「雅礼集训 2017 Day8」共(Prufer序列)
题面 传送门 题解 答案就是\(S(n-k,k)\times {n-1\choose k-1}\) 其中\(S(n,m)\)表示左边\(n\)个点,右边\(m\)个点的完全二分图的生成树个数,它的值为 ...
- LOJ #6044 -「雅礼集训 2017 Day8」共(矩阵树定理+手推行列式)
题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部 ...
- loj #6046. 「雅礼集训 2017 Day8」爷
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...
- LOJ#6046. 「雅礼集训 2017 Day8」爷(分块)
题面 传送门 题解 转化为\(dfs\)序之后就变成一个区间加,区间查询\(k\)小值的问题了,这显然只能分块了 然而我们分块之后需要在块内排序,然后二分\(k\)小值并在块内二分小于它的元素--一个 ...
- LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)
题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...
- 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价
又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...
- loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)
题意 链接 Sol 第一次做在二分图上博弈的题..感觉思路真是清奇.. 首先将图黑白染色. 对于某个点,若它一定在最大匹配上,那么Bob必胜.因为Bob可以一直沿着匹配边都,Alice只能走非匹配边. ...
- [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]
题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
随机推荐
- mysql Alter table设置default的问题,是bug么?
不用不知道,用了没用? 昨天在线上创建了一个表,其中有两个列是timestamp类型的,创建语句假设是这样的: create table timetest(id int, createtime tim ...
- sqlserver 一键备份,异机还原脚本
REM +---------------------------------------------------------------------------------+ REM |desc AU ...
- 如何将SQL Server 2000备份的数据库文件还原(升级)为SQL Server 2005或更高版本的数据库?
其实很简单,有两种方法. 方法一:将SQL Sever 2000数据库备份的数据库文件名后面加上“.bak”,然后直接在SQL Sever 2005或者高版本软件里面直接还原即可: 方法二:在SQL ...
- systemd 之 journalctl
Systemd 日志系统 一.前言 昨天写了一篇文章,内容为:Systemd 常规操作与彩蛋,参考了 ArchLinux 官方文档并结合培训中的思路进行了部分修改补充.如果你懂得了基础的管理,那必然还 ...
- October 11th 2017 Week 41st Wednesday
If you don't know where you are going, you might not get there. 如果你不知道自己要去哪里,你可能永远到不了那里. The reward ...
- 团队作业——Alpha冲刺 11/12
团队作业--Alpha冲刺 冲刺任务安排 杨光海天 今日任务:预览界面布局实现,并留下交互接口 明日任务:预览界面中自定义保存的实现 郭剑南 今日任务:尝试解决Python编写程序无法在Android ...
- U-Mail:如何实现EDM的个性化和定制化?
设想一下,一个上班族一天要接到多少垃圾邮件?据媒体报道,目前来往的邮件中,高达95%以上的是垃圾邮件,而且有些垃圾邮件还会故意占据着邮箱的最前列.同时,随着人们接受资讯越来越快捷便利,渠道越来越多,也 ...
- 2-3 R语言基础 矩阵和数组
#矩阵Matrix 三个参数:内容(可省),行数,列数 > x <- matrix(1:6,nrow = 3,ncol = 2) #第一个是内容,第二个,第三个是行列> x[1,2 ...
- Linq EF 添加数据执行事务处理
在EF4.1的DBContext中实现事务处理(BeginTransaction)和直接执行SQL语句的示例 2012-12-12 10:39 5538人阅读 ...
- 漫画:什么是HashMap?
漫画系列摘抄自程序员小灰的博客https://blog.csdn.net/bjweimengshu/article/list/3?t=1 ------------------------------- ...