[CF1062F]Upgrading Cities[拓扑排序]
题意
一张 \(n\) 点 \(m\) 边的 \(DAG\) ,问有多少个点满足最多存在一个点不能够到它或者它不能到。
\(n,m\leq 3\times 10^5\)
分析
考虑拓扑排序,如果 \(A\) 能够到 \(B\) ,那么 \(A,B\) 一定不能同时存在于队列中。
所以如果队列中同时存在的点超过了2个,队列中的点都是不合法的。
如果队列中只有一个点,那么剩下的没进队的点他都可以到达;如果队列中有两个点 \(a,b\),且 \(b\) 能够到达一个入度为1的点 \(c\),此时 \(a\) 一定不能够到 \(c\) ,否则 \(a\) 可以到剩下所有的点.
然而一对点不能互相到达不一定体现在同时存在于队列中,因为可能 \(a\) 已经出队后 \(b\) 才进队。但是 \(a\) 一定不会出现在 \(b\) 能够到达(被到达)的点集中(反向建边再跑一遍求被到达),所以判断每个点能够到达(被到达)的点集大小是否 \(\geq n-2\) 即可。
总时间复杂度为 \(O(n)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=3e5 + 7;
int edc,n,m,sel;
int head[N],mark[N],u[N],v[N],ind[N],f[N],q[N],hd,tl;
struct edge{
int lst,to;
edge(){}edge(int lst,int to):lst(lst),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
++ind[b];
}
void solve(int x,int y,int w){
bool fg=0;
go(y) if(ind[v]==1){fg=1;break;}
if(fg) mark[x]=1;
else f[x]+=w;
}
void topo(){
hd=1,tl=0;
rep(i,1,n) if(!ind[i]) q[++tl]=i;
for(;hd<=tl;++hd){
int u=q[hd];
if(hd==tl) f[u]+=n-tl;
if(tl-hd==1) solve(q[tl-1],q[tl],n-tl);
go(u)if(--ind[v]==0) q[++tl]=v;
}
}
int main(){
n=gi(),m=gi();
for(int i=1;i<=m;++i){
u[i]=gi(),v[i]=gi();
Add(u[i],v[i]);
}
topo();
memset(ind,0,sizeof ind);
memset(head,0,sizeof head);edc=0;
rep(i,1,m) Add(v[i],u[i]);
topo();
int ans=0;
rep(i,1,n) if(!mark[i]&&f[i]+1>=n-1) ++ans;
printf("%d\n",ans);
return 0;
}
[CF1062F]Upgrading Cities[拓扑排序]的更多相关文章
- CF1062F Upgrading Cities
题意 由于这是个\(DAG\),我们考虑拓朴排序,求某个点能到的和能到它的点,这是两个问题,我们可以正反两边拓朴排序,这样就只用考虑它能到的点了 设\(f[x]\)表示\(x\)能到的点数\(+\)能 ...
- 拓扑排序 --- hdu 4948 : Kingdom
Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- Codeforces Beta Round #29 (Div. 2, Codeforces format) C. Mail Stamps 离散化拓扑排序
C. Mail Stamps Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem ...
- POJ3249 Test for Job(拓扑排序+dp)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10137 Accepted: 2348 Des ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 【BZOJ-2938】病毒 Trie图 + 拓扑排序
2938: [Poi2000]病毒 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 609 Solved: 318[Submit][Status][Di ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- 图——拓扑排序(uva10305)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
随机推荐
- python编写脚本
#!/usr/bin/env python #-*- coding:utf-8 -*- import sys import os from subprocess import Popen,PIPE c ...
- MyISAM和InnoDB的主要区别和应用场景
主要区别: 1).MyISAM是非事务安全型的,而InnoDB是事务安全型的. 2).MyISAM锁的粒度是表级,而InnoDB支持行级锁定. 3).MyISAM支持全文类型索引,而InnoDB不支持 ...
- oracle 使用绑定变量极大的提升性能
初始化操作 SQL> alter system flush shared_pool; SQL> set timing on; 1. 未使用绑定变量的时候代码如下 declare type ...
- orcl 如何快速删除表中百万或千万数据
orcl 数据库表中数据达到上千万时,已经变的特别慢了,所以时不时需要清掉一部分数据. bqh8表中目前有10000000条数据,需要保留19条数据,其余全部清除掉. 以下为个人方法: 1.首先把需要 ...
- mySQL 约束 (Constraints):一、非空约束 NOT NULL 约束
非空约束 NOT NULL 约束: 强制列不能为 NULL 值,约束强制字段始终包含值.这意味着,如果不向字段添加值,就无法插入新记录或者更新记录. 1.在 "Persons" 表 ...
- Linux每日小技巧---ss命令
ss命令 ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它能够显示更多更详细的有关TCP和连 ...
- 如何创建只读权限oracle账户
1.创建角色 CREATE ROLE SELECT_ROLE 2.给角色分配权限 grant CREATE VIEW to SELECT_ROLE; grant CREATE SYNONYM to S ...
- jQuery 效果函数,jquery文档操作,jQuery属性操作方法,jQuerycss操作函数,jQuery参考手册-事件,jQuery选择器
jQuery 效果函数 方法 描述 animate() 对被选元素应用“自定义”的动画 clearQueue() 对被选元素移除所有排队的函数(仍未运行的) delay() 对被选元素的所有排队函数( ...
- php输出年份
Copyright <?php echo date('Y');?> by Creditease Corp.All Right Reserved.
- python-webbrowser模块 浏览器操作
python的webbrowser模块支持对浏览器进行一些操作,对于爬虫来说是比较基础的知识点 1.主要有以下三个方法: webbrowser.open(url, new=0, autoraise=T ...