题目描述

每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N). John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i 他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.

输入格式

第一行: 三个空格分开的数: N, M, 和 K

第2..M+1行: 第i+1行有三个空格分开的数:P1_i, P2_i, 和 T_i

输出格式

第一行: 更新最多K条路经后的最短路经长度.


解法1:

动态规划。设dis(i,j)表示更新了j条路径之后i的最短路,设pre(u)表示u的前驱节点,那么:

\[dis[i][j]=Min_{k{\in}pre(i)}{\{}Min(dis[k][j]+edge(k,i),dis[k][j-1]){\}}
\]

解法2:

分层图最短路,把原图多建k层,若原图中存在edge(u,v),那么把每层的u都往下一层的v连一条长度为0的有向边,然后跑最短路即可。答案为每一层终点的最短路的最小值

时间复杂度都是O((N+M)log(K*(N+M)))。给出分层图最短路的代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 10001
#define maxm 50001
#define maxk 21
using namespace std; struct edge{
int to,dis,next;
edge(){}
edge(const int &_to,const int &_dis,const int &_next){ to=_to,dis=_dis,next=_next; }
}e[maxm*maxk*4];
int head[maxn*maxk],k; int dis[maxn*maxk];
bool vis[maxn*maxk];
int n,m,q,s,t; inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
inline void add(const int &u,const int &v,const int &w){ e[k]=edge(v,w,head[u]),head[u]=k++; } inline void dijkstra(){
priority_queue< pair<int,int>,vector< pair<int,int> >,greater< pair<int,int> > > q;
memset(dis,0x3f,sizeof dis),dis[1]=0;
q.push(make_pair(0,1));
while(q.size()){
int u=q.top().second; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(dis[v]>dis[u]+e[i].dis) dis[v]=dis[u]+e[i].dis,q.push(make_pair(dis[v],v));
}
}
} int main(){
memset(head,-1,sizeof head);
n=read(),m=read(),q=read();
for(register int i=1;i<=m;i++){
int u=read(),v=read(),w=read();
for(register int j=0;j<=q;j++) add(u+n*j,v+n*j,w),add(v+n*j,u+n*j,w);
for(register int j=1;j<=q;j++) add(u+n*(j-1),v+n*j,0),add(v+n*(j-1),u+n*j,0);
}
dijkstra(); int ans=0x3f3f3f3f;
for(register int i=0;i<=q;i++) ans=min(ans,dis[n+n*i]);
printf("%d\n",ans);
return 0;
}

[Usaco2009 Feb]Revamping Trails 道路升级的更多相关文章

  1. Bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 dijkstra,堆,分层图

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1573  Solv ...

  2. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )

    最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...

  3. 【BZOJ 1579】 1579: [Usaco2009 Feb]Revamping Trails 道路升级 (最短路)

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M< ...

  4. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

  5. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 -- 分层图最短路

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MB Description 每天,农夫 ...

  6. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 优先队列+dij

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1768  Solv ...

  7. 分层图最短路 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M< ...

  8. 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路

    题目描述 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 < ...

  9. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  10. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

随机推荐

  1. Java NIO:FileChannel数据传输

    调用方式 FileChannel dstChannel; FileChannel srcChannel; dstChannel.transferFrom(srcChannel,0,srcChannel ...

  2. css 12-CSS3属性详解:动画详解

    12-CSS3属性详解:动画详解 #前言 本文主要内容: 过渡:transition 2D 转换 transform 3D 转换 transform 动画:animation #过渡:transiti ...

  3. js上 十三、函数初步-2

    13-1.函数的参数 函数的本质: ü 函数的作用,代码重用,编写一个函数,就是为了解决一类问题. ü 函数每次调用,都有一个结果,那么结果和什么相关呢?y = x , y = x2,y = sin( ...

  4. js上 六、运算符-2

    6.1.关系运算符 用来进行比较的.比较的结果通常是布尔值真和假. ü ==:相等,只比较值是否相等 ü ===:全等,比较值的同时比较数据类型是否相等 ü !=:不相等,比较值是否不相等 ü !== ...

  5. [日常摸鱼]Luogu1801 黑匣子(NOI导刊)

    题意:写一个数据结构,要求滋兹两种操作,ADD:插入一个数,GET:令$i++$然后输出第$i$小的数 这个数据结构当然是平衡树啦!(雾) 写个Treap直接过掉啦- #include<cstd ...

  6. Spring中BeanFactory与FactoryBean到底有什么区别?

    一.BeanFactory BeanFactory是一个接口,它是Spring中工厂的顶层规范,是SpringIoc容器的核心接口,它定义了getBean().containsBean()等管理Bea ...

  7. (30)ASP.NET Core3.1 集成Apollo快速安装与使用

    1.介绍 Apollo(阿波罗)是携程框架部研发并开源的一款生产级的配置中心产品,它能够集中管理应用在不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用 ...

  8. 基于LNMP架构搭建wordpress博客之安装架构说明

    架构情况 架构情况:基于LNMP架构搭建wordpress系统 软件包版本说明: 系统要求 :  CentOS-6.9-x86_64-bin-DVD1.iso PHP版本  :  php-7.2.29 ...

  9. PhPMyadmin拿Shell

    phpmyadmin 是一个以PHP为基础,以Web-Base方式架构在网站主机上的MySQL的数据库管理工具,      --百度百科 1.入口寻找 目录扫描: 根据Linux对大小写敏感判断目标服 ...

  10. Dubbo服务暴露源码解析②

    目录 0.配置解析 1.开始export 2.组装URL 3.服务暴露 疑问解析 ​ 先放一张官网的服务暴露时序图,对我们梳理源码有很大的帮助.注:不论是暴露还是导出或者是其他翻译,都是描述expor ...