题目背景

pj组选手zzq近日学会了求最大公约数的辗转相除法。

题目描述

类比辗转相除法,zzq定义了一个奇怪的函数:

typedef long long ll;
ll f(ll a,ll b)
{
if(a==b) return ;
if(a>b) return f(a-b,b+b)+;
else return f(a+a,b-a)+;
}

zzq定义完这个函数兴高采烈,随便输入了两个数,打算计算f值,发现这个函数死循环了...于是zzq定义这个函数递归死循环的情况下f值为0。

现在zzq输入了一个数n,想要求出

输入输出格式

输入格式:

一行两个数n。

输出格式:

一行一个数

输入输出样例

输入样例#1:

100
输出样例#1:

1124
输入样例#2:

2000
输出样例#2:

68204

说明

对于10%的数据,

对于40%的数据,

对于70%的数据,

对于100%的数据,

数学问题 结论题 分块

似乎很有趣。

要证一个奇奇怪怪的结论:

当且仅当 “ $ a/(gcd(a,b)+b/gcd(a,b)=2^m $ ”时, $ f(a,b) $ 值为 $ m-1 $ ,否则 $ f(a,b)=0 $

一种简单的证明如下:

打表观察,发现上述结论显然成立,得证

另一种并不严谨的证明如下:

只考虑gcd(a,b)=1的情况

证明: $ a+b=2^m $时,$ f(a,b)=m-1 $

当 $a=1$ $b=1$ $ a+b=2^1 $时,显然有$ f(a,b)=1-1=0 $

否则,对于任意 $ a+b=2^m $,假设a<b,那么 $ f(a,b)=f(a+a,b-a)+1 $

由于a+b是2的倍数且a,b互质且a<b,那么b-a肯定是偶数,所以 $ f(a+a,b-a)=f(a*2,b-a)=f(a,(b-a)/2) $

此时$ a+(b-a)/2 = 2_{ }^{m-1} $ ,递归计算可得 $ f(a,b)=m-1 $ 得证。

其他情况乱搞一下发现会死循环

然后愉快(并不)地分块求值。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define LL long long
using namespace std;
const int mxn=;
LL read(){
LL x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
LL n,ans=;
int main(){
n=read();
int lg=;
for(LL i=;i;i<<=){
for(LL x,j=(i>>)+;j<i && j<=n;j=x+){
x=n/(n/j);
x=min(x,min(n,i-));
if(!(x&))x--;
ans+=lg*(n/j)*(((x-j)>>)+);
}
if(i>=n)break;
++lg;
}
ans<<=;
printf("%lld\n",ans);
return ;
}

洛谷P3764 签到题 III的更多相关文章

  1. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  2. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  4. 洛谷3794 签到题IV

    题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...

  5. 洛谷P3601 签到题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  7. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  8. 洛谷P5274 优化题(ccj)

    洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...

  9. 洛谷 P4148 简单题 KD-Tree 模板题

    Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...

随机推荐

  1. 寒假学习计划——MOOC

    课程 西安交通大学[https://www.icourse163.org/course/XJTU-46006?tid=1002265006] 理由 本身中国大学mooc里c++课程不多,完结了能够有很 ...

  2. Java中的基本数据类型包装类

    在 java 中为什么会有基本数据类型的包装类? ①:基本数据类型之间的相互转换不是都可以制动转换的,而你强制转换又会出问题,比如String类型的转换为int类型的,那么jdk为了方便用户就提供了相 ...

  3. ACM 第十五天

    计算几何基础 练习题 C - Wasted Time Mr. Scrooge, a very busy man, decided to count the time he wastes on all ...

  4. C#创建Window服务图解,安装、配置、以及C#操作Windows服务

    一.首先打开VS2013,创建Windows服务项目 二.创建完成后对"Service1.cs"重命名位"ServiceDemo":然后切换到代码视图,写个服务 ...

  5. jconsole工具监控java运行情况

    jconsole是jdk自带的工具.所以要先安装jdk  1.jconsole工具的路径: 通过which jconsole来查看 /usr/local/jdk1.7.0_79/bin/jconsol ...

  6. Python 配置日志的几种方式

    Python配置日志的几种方式 作为开发者,我们可以通过以下3种方式来配置logging: (1)使用Python代码显式的创建loggers,handlers和formatters并分别调用它们的配 ...

  7. Xshell访问本地或者远程Linux虚拟机

    背景 在本地PC机上安装了VMware workstation和Ubuntu系统,但是每次访问虚拟机都需要输入登陆密码,比较不方便.为此,通过Xshell来访问虚拟机,提高工作效率. 步骤 1.打开虚 ...

  8. WCF服务的建立以及调用

    WCF对我来说既陌生又熟悉,陌生是因为没怎么接触过,熟悉是听得太多,今天抽出点时间看了一下WCF,并且自己也写了一WCF的小程序以及调用WCF.步骤为: 1.创建一个解决方案WCF,和一个控制台项目W ...

  9. 深入理解Delete(JavaScript)

    深入理解Delete(JavaScript) Delete  众所周知是删除对象中的属性. 但如果不深入了解delete的真正使用在项目中会出现非常严重的问题 (: Following 是翻译  ka ...

  10. POJ1061:青蛙的约会——题解

    http://poj.org/problem?id=1061 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定 ...