1.什么是非负矩阵分解?

NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵V,NMF算法能够寻找到一个非负矩阵W和一个非负矩阵H,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积。如下图所示,其中要求分解后的矩阵H和W都必须是非负矩阵。

分解前后可理解为:原始矩阵的列向量是对左矩阵中所有列向量的加权和,而权重系数就是右矩阵对应列向量的元素,故称为基矩阵,为系数矩阵。一般情况下的选择要比小,即满足,这时用系数矩阵代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩阵,从而减少存储空间,减少计算机资源。

2.非负矩阵分解一个示例解释

通过图1中的面部特征提取例子可领略NMF处理数据的方式。最左边的大矩阵由一系列的小图组成,这些小图是分析数据库中包含的2429个脸部图像的结果,每幅图像由19×19个像素组成。传统方法中这样的小图是一幅完整的人脸图像,但是在NMF方法中,每个小图是通过一组基图像乘以一个权重矩阵而产生的面部特征图,经过这样处理的每幅小图像恰好表示了诸如“鼻子”、“嘴巴”、“眼睛”等人脸局部概念特征,这便大大压缩了存放的图像数据量。左边的大矩阵由每幅小图像的19列一起组成矩阵的一列,那样它就是19×19=361行,2429列。这个例子中,NMF方法用基图像来代表眼、眉毛、鼻子、嘴、耳朵、胡子等,它们一起组成了数据库中的脸。这样给人最先的直觉就是它很好地压缩了数据。事实上Lee和Seung在他们的论文中更深入地指出,与人类识别事物的过程相似,NMF也是一种优化的机制,近似于我们的脑分析和存储人脸数据的过程。这个例子中,原图像表示这些局部特征的加权组合,这与人类思维中“局部构成整体”的概念是相吻合的。因此,NMF算法似乎体现了一种智能行为。

3.非负矩阵分解NMF的应用

(1)图像分析  NMF最成功的一类应用是在图像的分析和处理领域

(2)文本聚类,数据挖掘

(3)语音处理

(4)机器人控制

(5)生物医药工程和化学工程

数据降维-NMF非负矩阵分解的更多相关文章

  1. NMF非负矩阵分解

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  2. 降维、特征提取与流形学习--非负矩阵分解(NMF)

    非负矩阵分解(NMF)是一种无监督学习算法,目的在于提取有用的特征(可以识别出组合成数据的原始分量),也可以用于降维,通常不用于对数据进行重建或者编码. NMF将每个数据点写成一些分量的加权求和(与P ...

  3. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...

  4. 浅谈隐语义模型和非负矩阵分解NMF

    本文从基础介绍隐语义模型和NMF. 隐语义模型 ”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解. ...

  5. 非负矩阵分解(4):NMF算法和聚类算法的联系与区别

    作者:桂. 时间:2017-04-14   06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处 ...

  6. 文本主题模型之非负矩阵分解(NMF)

    在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解 ...

  7. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

  8. 推荐算法——非负矩阵分解(NMF)

    一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵 ...

  9. 非负矩阵分解(NMF)原理及算法实现

    一.矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 .我们要使得矩阵和 的乘积能够还 ...

随机推荐

  1. 阿里巴巴 Kubernetes 应用管理实践中的经验与教训

    作者 | 孙健波(阿里巴巴技术专家).赵钰莹 导读:云原生时代,Kubernetes 的重要性日益凸显.然而,大多数互联网公司在 Kubernetes 上的探索并非想象中顺利,Kubernetes 自 ...

  2. python:__name__的使用

    1.python中__name__是什么意思? 很多python的初学者可能都会遇到一个问题:__name__是什么意思? 在刚开始学习python的时候,我们总会看到这样一句代码: if __nam ...

  3. 转:如何让phpmyadmin输入密码再进入

    对于很多不熟悉PHP环境安装的朋友来说,用集成环境可以更快的上手,更方便的搭建PHP的运行环境,但是,WAMP的集成环境仅仅是将底层基础工作做好了,有些个别关键的配置操作并没有集成到环境安装中,所以给 ...

  4. how2heap 源码及输出

    备个份,慢慢写总结 1 first_fit #include <stdio.h> #include <stdlib.h> #include <string.h> i ...

  5. 当 Redis 发生高延迟时,到底发生了什么

    Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多.但是 Redis 也会发生延迟时,这是就需要我们对其产生原因有深刻的了解,以便于快速排查问题,解 ...

  6. 常见Java数据结构&优缺点

      数组   优点:查询快,如果知道索引可以快速地存取   缺点:删除慢,大小固定     有序数组   优点:比无序数组查找快   缺点:删除和插入慢,大小固定   栈   优点:提供后进先出的存取 ...

  7. Spring Cloud gateway 六 Sentinel nacos存储动态刷新

    微服务当前这么火爆的程度,如果不能学会一种微服务框架技术.怎么能升职加薪,增加简历的筹码?spring cloud 和 Dubbo 需要单独学习.说没有时间?没有精力?要学俩个框架?而Spring C ...

  8. 11、pytest -- 测试的参数化

    目录 1. @pytest.mark.parametrize标记 1.1. empty_parameter_set_mark选项 1.2. 多个标记组合 1.3. 标记测试模块 2. pytest_g ...

  9. Unicode字符串和非Unicode字符串

    什么是Unicode? Unicode(统一码.万国码.单一码)是计算机科学领域里的一项业界标准,包括字符集.编码方案等.Unicode 是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每 ...

  10. STM32中断系统

    1.中断介绍:    1.1 中断概念 CPU执行程序时,由于发生了某种随机的事件(外部或内部),引起CPU暂 时中断正在运行的程序,转去执行一段特殊的服务程序(中断服务子程序 或中断处理程      ...