题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286

欧拉函数:对正整数n,欧拉函数是求少于n的数中与n互质的数的数目;

素数(质数)指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数.

φ函数的值  通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。
 
φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
 
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
 
设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。
 
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
 
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
 
     若n为质数则φ(n)=n-1。
 
利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。
 
欧拉函数和它本身不同质因数的关系:
欧拉函数ψ(N)=N{∏p|N}(1-1/p)亦即:(P是数N的质因数
单独求n的欧拉函数值:
int Euler(int n)///返回n以内与n互质的数的个数;
{
int ret=1;
for(int i=2; i*i<=n; i++)
{
if(n%i==0)
{
n/=i;
ret*=i-1;
while(n%i==0)
{
n/=i;
ret*=i;
}
}
}
if(n>1)
ret*=n-1;
return ret;
}

  筛选法求n以内所有的欧拉函数值( O(n) )

/*线性筛O(n)时间复杂度内筛出N内欧拉函数值*/
int m[N], el[N], p[N], pcnt=0;//m[i]是i的最小素因数,p是素数,pt是素数个数 void make()
{
el[1]=1;
int k;
for(int i=2; i<N; i++)
{
if(!m[i])//i是素数;
{
p[pcnt++]=m[i]=i;
el[i]=i-1;
}
for(int j=0; j<pcnt&&(k=p[j]*i)<N; j++)
{
m[k]=p[j];
if(m[i]==p[j])//为了保证以后的数不被再筛,要break
{
el[k]=el[i]*p[j];//这里的el[k]与el[i]后面的∏(p[i]-1)/p[i]都一样(m[i]==p[j])只差一个p[j],就可以保证∏(p[i]-1)/p[i]前面也一样了;
break;
}
else
el[k]=el[i]*(p[j]-1);//积性函数性质,f(i*k)=f(i)*f(k);
}
}
}

  简单的写法:

int eul[N];
void Euler(int n)///打表法求eul[i] (i<n)
{
for(int i=2; i<n; i++)
{
if(eul[i]) continue;
for(int j=i; j<n; j+=i)
{
if(!eul[j]) eul[j] = j;
eul[j] = eul[j] / i * (i-1);
}
}
}

  

 附上本题代码:
#include<stdio.h>
int Euler(int n)///返回n以内与n互质的数的个数;
{
int ret=;
for(int i=; i*i<=n; i++)
{
if(n%i==)
{
n/=i;
ret*=i-;
while(n%i==)
{
n/=i;
ret*=i;
}
}
}
if(n>)
ret*=n-;
return ret;
} int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("%d\n", Euler(n));
}
return ;
}

找新朋友---hdu1286(欧拉函数)的更多相关文章

  1. hdoj 1286 找新朋友【欧拉函数】

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. HDU——1286找新朋友(欧拉函数+质数打表)

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. hdu 1286 找新朋友 (欧拉函数)

    Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的 ...

  4. hdu 1286 找新朋友(欧拉函数)

    题意:欧拉函数 思路:欧拉函数 模板,代码略.

  5. HDU 1286:找新朋友(欧拉函数)

    http://acm.hdu.edu.cn/showproblem.php?pid=1286 题意:中文. 思路:求欧拉函数. #include <cstdio> #include < ...

  6. 找新朋友(hdoj--1286--欧拉函数)

    欢迎参加--每周六晚的BestCoder(有米!) 找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. hdu1286 寻找新朋友 (欧拉功能)

    原标题:点击打开链接 关于欧拉函数的算法具体解说:点击打开链接 欧拉函数 1.欧拉函数是不全然积性函数. 2.欧拉函数p(x) = x * (p1 - 1) / p1 * (p2 - 1)/p2 * ...

  8. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. 欧拉函数之HDU1286找新朋友

    找新朋友 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissi ...

随机推荐

  1. hdu1078(记忆化搜索)

    题意:给出n*n的格子,每个各自里面有些食物,问一只老鼠每次走最多k步所能吃到的最多的食物 这道题目,值得我记住它,re了n次,以前写搜索没有注意的一个小地方,导致re这么多次的 ac代码: #inc ...

  2. Scrum培训心得体会

    # Scrum培训心得体会 非常荣幸能够参加公司组织的这场为期两天的培训,赛宝的老师讲的非常好.通过这次学习,理解了当前最流行的Scrum开发框架,下面总结了我对Scrum的理解. ## scrum的 ...

  3. C#里面的枚举与位或运算符 一个枚举变量存入多个值

    以前我们如果定义一个枚举类型 ,然后定义一个枚举变量,那么这个枚举变量只能为类型中的一个值,现在我们想要一个变量能够代表多个值: 今天看<Pro Net 2.0 Windows Forms An ...

  4. Unity3D中UGUI使用ScrollBar之后保存,工程启动报错原因跟踪

    笔者不久前将Unity3D版本更新为4.6.2之后.在使用新UI的时候发现关闭项目之后经常再次打开项目会出现一对的报错. 找了一圈,发现是ScrollBar控件出现了BUG.整个空间的滑块消失了. 在 ...

  5. beaglebone black ubuntu display x11 server的配置

     Change default resolution on BeagleBone modesetting vs fbdev digiteltlc May 7th, 2014, 03:28 PM Hi ...

  6. 串口编程-termios编程

    linux使用terminfo数据库来描述终端能力以及调用对应功能的方法.POSIX定义了完成终端I/O的标准方法:termios函数族 #include <termios.h>#incl ...

  7. 使用wc统计代码行数

    最近写了一些代码,想统计一下代码的行数,在eclipse中好像没这功能,网上搜了一下才发现原来Linux有一个统计文件行数的命令wc.使用wc可以打印出每个文件和总文件的行数.字数和字节数,如果没有指 ...

  8. 面向对象设计原则二:开闭原则(OCP)

    开闭原则(OCP)定义:对扩展开发,对修改关闭.好处:      适应性和灵活性.      稳定性和延续性.      可复用性与可维护性. 解释说明:开闭原则指的是两方面:对功能扩展开发,对修改进 ...

  9. 程序中判断android系统版本

    public static int getAndroidSDKVersion() { int version; try { version = Integer.valueOf(android.os.B ...

  10. 006杰信—factory更新数据

    本博客的资源全部来源于传智播客. factroy更新的执行流程和003杰信-在jsp页面输入数据,然后在oracle数据库中插入factory数据,当字段允许为空时要特殊处理差不多, 1.在jFact ...