首先,分析一下这个猫和鼠

猫每局都可以追老鼠一步或者两步,但是除了最后的一步,肯定走两步快些....

既然猫走的步数总是比老鼠多,那么它们的距离在逐渐缩小(如果这题只能走一步反而不能做了...)

猫不知道老鼠下一步走哪里,猫走的时候依据的是老鼠当前的位置

明显,猫走的位置没有什么规律可言(即使有规律还是会预处理啊.....)

我们可以在$O(n^2 + nm)$的复杂度内预处理出$s(i, j)$表示猫在$i$,老鼠在$j$时,猫下一步的位置...

直接设$f(i, j)$表示猫在$i$,老鼠在$j$时猫吃到老鼠的期望步数

那么有$f(i, i) = 0$

并且$f(i, s(i, j)) = 1,f(i, s(s(i, j), j)) = 1 (i \neq j)$

其余情况下$f(i, j) = \sum\limits_{v = j | e(j, v)} \frac{f(s(s(i, j), j), v) + 1}{du[j] + 1}$

由于猫鼠距离减小,因此转移具有拓扑序

可以根据猫鼠距离排序转移,也可以直接$dfs$

由于$dfs$好写,因此这里选择$dfs$

复杂度$O(n^2 + nm)$

#include <cstdio>
#include <iostream>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define de double
#define sid 1005
#define eid 5005
#define ri register int int n, m, s, t, cnp;
int cap[eid], nxt[eid], node[eid], q[eid];
int du[sid], dis[sid][sid], nx[sid][sid];
de f[sid][sid]; void adeg(int u, int v) {
du[u] ++;
nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v;
} #define cur node[i]
void Pre() {
for(ri u = ; u <= n; u ++) {
int fr = , to = ;
q[++ to] = u; dis[u][u] = ;
while(fr <= to) {
int o = q[fr ++];
for(ri i = cap[o]; i; i = nxt[i])
if(dis[u][cur] == 1e5)
dis[u][cur] = dis[u][o] + , q[++ to] = cur;
}
}
for(ri u = ; u <= n; u ++)
for(ri v = ; v <= n; v ++) {
int w = 1e5;
for(ri i = cap[u]; i; i = nxt[i])
if(dis[cur][v] < w || (dis[cur][v] == w && nx[u][v] > cur))
nx[u][v] = cur, w = dis[cur][v];
}
} de dfs(int a, int b) {
if(f[a][b] != -) return f[a][b];
if(a == b) return f[a][b] = ;
int to = nx[a][b], toto = nx[to][b];
if(to == b || toto == b) return f[a][b] = ;
f[a][b] = ;
for(int i = cap[b]; i; i = nxt[i])
f[a][b] += (dfs(toto, cur) + ) / (de)(du[b] + );
f[a][b] += (dfs(toto, b) + ) / (de)(du[b] + );
return f[a][b];
} int main() {
n = read(); m = read();
s = read(); t = read();
for(ri i = ; i <= m; i ++) {
int u = read(), v = read();
adeg(u, v); adeg(v, u);
} for(ri i = ; i <= n; i ++)
for(ri j = ; j <= n; j ++)
dis[i][j] = 1e5, f[i][j] = -; Pre();
printf("%.3lf\n", dfs(s, t));
return ;
}

luoguP4206 [NOI2005]聪聪与可可 期望概率DP的更多相关文章

  1. BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp

    首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...

  2. BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs

    BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2 ...

  3. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  4. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  5. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  6. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  7. 期望概率DP

    期望概率DP 1419: Red is good ​ Description ​ 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...

  8. bzoj1415 [Noi2005]聪聪和可可【概率dp 数学期望】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是 ...

  9. HYSBZ 1415 - 聪聪和可可(概率DP)

    http://vjudge.net/problem/viewProblem.action?id=20613 题意:不用说了,中文题. 这个题可以用概率DP来做. 题中要求猫抓到老鼠的时间期望.分析一下 ...

随机推荐

  1. DOM使用

    DOM树模型 document |-html |-head |-.... |-body |-..... 要解析页面的前提是要拿到一个对象,然后利用树之间前后的关系进行对象的遍历和操作. 在DHTML的 ...

  2. 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)

    题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...

  3. Linux下文本浏览器lynx

    一般登录到Linux上的时候都是使用Shell登录上去的,但是如果这个时候我们有浏览网页的需求怎么办,比如我刚刚部署上去一个网站,但是我并不知道我有没有部署成功,而且只能在这一台Linux上能够访问到 ...

  4. Python作业工资管理系统(第三周)

    作业内容: 实现效果: 从info.txt文件中读取员工及其工资信息,最后将修改或增加的员工工资信息也写入原info.txt文件. 效果演示: 1. 查询员工工资 2. 修改员工工资 3. 增加新员工 ...

  5. document.write 简介

    document.write 的执行分两种情况: 第一种:dom加载已完成 1. 执行 document.open() (即会清空document) 2. 执行 document.write() 3. ...

  6. python OS 模块 文件目录操作

    Python OS 模块 文件目录操作 os模块中包含了一系列文件操作的函数,这里介绍的是一些在Linux平台上应用的文件操作函数.由于Linux是C写的,低层的libc库和系统调用的接口都是C AP ...

  7. Linux 内核进程管理之进程ID【转】

    转自:http://www.cnblogs.com/hazir/p/linux_kernel_pid.html Linux 内核使用 task_struct 数据结构来关联所有与进程有关的数据和结构, ...

  8. Deep Learning基础--各个损失函数的总结与比较

    损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验 ...

  9. 【bzoj4293】【PA2015】Siano

    如题,首先可以考虑相对大小是不变的. 那么先sort,之后每次在线段树上二分即可. #include<bits/stdc++.h> typedef long long ll; using ...

  10. Android仿新浪新闻SlidingMenu界面的实现 .

    先看看原图: 如图所示,这种侧滑效果以另一种方式替代了原先tab导航的那种用户体验方式 给人耳目一新的感觉,现已被广大知名应用所效仿,如新浪新闻,网易新闻,人人网等 那么这种效果该如何实现呢?那就需要 ...