【BZOJ2671】Calc

##题面
BZOJ
给出N,统计满足下面条件的数对(a,b)的个数:
1.$1\le a\lt b\le N$
2.$a+b$整除$a*b$
我竟然粘了题面!!!
##题解
还是今天菊开讲的。
设出$d=gcd(a,b)$
那么,设$a=xd,b=yd,gcd(x,y)=1$
\((x+y)d|xyd^2,x+y|xyd\)
根据辗转相减的原理
可以得到$gcd(x+y,x)=gcd(x+y,y)=gcd(x,y)=1$,所以$x+y|d$。
设$d=k(x+y)$,因为$a<b$,所以$x<y$,因为$d=k(x+y)\le n$
而$b=yd=yk(x+y)\le n$
所以确定了$x,y$之后,有$\frac{y(x+y)}$个$d$
根据上面的式子,还可以知道$y\lt\sqrt n$
所以,我们要求的就是
\(\sum_{x=1}^{\sqrt n}\sum_{y=x+1}^{\sqrt n}[gcd(x,y)=1]\frac{n}{y(x+y)}\)
这样直接算的复杂度是$O(nlogn)$
发现$gcd$的形式非常可以莫比乌斯反演
先把$x,y$反过来

\(\sum_{y=1}^{\sqrt n}\sum_{x=1}^{y-1}[gcd(x,y)=1]\frac{n}{y(x+y)}\)
直接莫比乌斯反演化简
\(\sum_{d=1}^{\sqrt n}\mu(d)\sum_{y=1}^{\sqrt n}\sum_{x=1}^{y-1}\frac{n}{yd^2(x+y)}\)
复杂度?假的,直接艹吧。。

#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
#define MAX 111111
int n,m;ll ans;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
ll Calc(int n,int m)
{
ll ret=0;
for(int i=1;i<=m;++i)
{
int t=n/i;
for(int j=i+1,k;j<(i<<1)&&j<=t;j=k+1)
k=min((i<<1)-1,t/(t/j)),ret+=1ll*(k-j+1)*(t/j);
}
return ret;
}
int main()
{
cin>>n;m=sqrt(n);mu[1]=1;
for(int i=2;i<=m;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;i*pri[j]<=m;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];else break;
}
}
for(int i=1;i<=m;++i)if(mu[i]!=0)ans+=mu[i]*Calc(n/i/i,m/i);
cout<<ans<<endl;return 0;
}

【BZOJ2671】Calc(莫比乌斯反演)的更多相关文章

  1. BZOJ2671 Calc(莫比乌斯反演)

    两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救. 感觉这个题其实第一步是最难想到的,也是最重要的. 设d=gcd(a,b).那么a=yd,b=xd,且gcd(x,y)= ...

  2. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  3. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  4. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  5. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  6. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  7. Luogu4916 魔力环 莫比乌斯反演、组合、生成函数

    传送门 先不考虑循环同构的限制,那么对于一个满足条件的序列,如果它的循环节长度为\(d\),那么与它同构的环在答案中就会贡献\(d\)次. 所以如果设\(f_i\)表示循环节长度恰好为\(i\)的满足 ...

  8. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  9. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

随机推荐

  1. Luogu P2421 [NOI2002]荒岛野人

    最近上课时提到的一道扩欧水题.还是很可做的. 我们首先注意到,如果一个数\(s\)是符合要求的,那么那些比它大(or 小)的数不一定符合要求. 因此说,答案没有单调性,因此不能二分. 然后题目中也提到 ...

  2. GATT服务搜索流程(二)

    关于bta_dm_cb.p_sec_cback,这里我们之前已经分析过,他就是bte_dm_evt ,最终调用的函数btif_dm_upstreams_evt : static void btif_d ...

  3. Nginx code 常用状态码学习小结

    最近了解下Nginx的Code状态码,在此简单总结下.一个http请求处理流程: 一个普通的http请求处理流程,如上图所示:A -> client端发起请求给nginxB -> ngin ...

  4. js怎么将 base64转换成图片

    //获取数组最后一个元素 let hasFiles = files[Object.keys(files).pop()] // 参考上面的图片 let file = hasFiles.url let n ...

  5. “北航学堂”M2阶段postmortem

    “北航学堂”M2阶段postmortem 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 这个问题我们在M1阶段的时候就已经探讨的比较明确了,就是 ...

  6. M2postmortem

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 答:我们的软件主要解决信息提取的问题.定义清晰:要提取的内容包括于计算机科学相关内容的标题.作者. ...

  7. git工具

    1.Git Bash常用命令: pwd    当前工作目录 clear   清屏 ls   列举当前目录下的文件及文件夹 cd 更改目录 mkdir   创建目录 touch   创建空文件 cp 拷 ...

  8. activiti-ldap-integration

    https://stackoverflow.com/questions/19488764/activiti-ldap-integration https://community.alfresco.co ...

  9. Docker镜像加速设置

    地址:https://www.daocloud.io/mirror#accelerator-doc 配置 Docker 加速器 Linux MacOS Windows curl -sSL https: ...

  10. ThreadPoolExecutor参数

    1.ThreadPoolExecutor个参数的意义(类上的注释内容) * @param corePoolSize the number of threads to keep in the* pool ...