【BZOJ2671】Calc

##题面
BZOJ
给出N,统计满足下面条件的数对(a,b)的个数:
1.$1\le a\lt b\le N$
2.$a+b$整除$a*b$
我竟然粘了题面!!!
##题解
还是今天菊开讲的。
设出$d=gcd(a,b)$
那么,设$a=xd,b=yd,gcd(x,y)=1$
\((x+y)d|xyd^2,x+y|xyd\)
根据辗转相减的原理
可以得到$gcd(x+y,x)=gcd(x+y,y)=gcd(x,y)=1$,所以$x+y|d$。
设$d=k(x+y)$,因为$a<b$,所以$x<y$,因为$d=k(x+y)\le n$
而$b=yd=yk(x+y)\le n$
所以确定了$x,y$之后,有$\frac{y(x+y)}$个$d$
根据上面的式子,还可以知道$y\lt\sqrt n$
所以,我们要求的就是
\(\sum_{x=1}^{\sqrt n}\sum_{y=x+1}^{\sqrt n}[gcd(x,y)=1]\frac{n}{y(x+y)}\)
这样直接算的复杂度是$O(nlogn)$
发现$gcd$的形式非常可以莫比乌斯反演
先把$x,y$反过来

\(\sum_{y=1}^{\sqrt n}\sum_{x=1}^{y-1}[gcd(x,y)=1]\frac{n}{y(x+y)}\)
直接莫比乌斯反演化简
\(\sum_{d=1}^{\sqrt n}\mu(d)\sum_{y=1}^{\sqrt n}\sum_{x=1}^{y-1}\frac{n}{yd^2(x+y)}\)
复杂度?假的,直接艹吧。。

#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
#define MAX 111111
int n,m;ll ans;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
ll Calc(int n,int m)
{
ll ret=0;
for(int i=1;i<=m;++i)
{
int t=n/i;
for(int j=i+1,k;j<(i<<1)&&j<=t;j=k+1)
k=min((i<<1)-1,t/(t/j)),ret+=1ll*(k-j+1)*(t/j);
}
return ret;
}
int main()
{
cin>>n;m=sqrt(n);mu[1]=1;
for(int i=2;i<=m;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;i*pri[j]<=m;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];else break;
}
}
for(int i=1;i<=m;++i)if(mu[i]!=0)ans+=mu[i]*Calc(n/i/i,m/i);
cout<<ans<<endl;return 0;
}

【BZOJ2671】Calc(莫比乌斯反演)的更多相关文章

  1. BZOJ2671 Calc(莫比乌斯反演)

    两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救. 感觉这个题其实第一步是最难想到的,也是最重要的. 设d=gcd(a,b).那么a=yd,b=xd,且gcd(x,y)= ...

  2. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  3. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  4. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  5. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  6. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  7. Luogu4916 魔力环 莫比乌斯反演、组合、生成函数

    传送门 先不考虑循环同构的限制,那么对于一个满足条件的序列,如果它的循环节长度为\(d\),那么与它同构的环在答案中就会贡献\(d\)次. 所以如果设\(f_i\)表示循环节长度恰好为\(i\)的满足 ...

  8. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  9. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

随机推荐

  1. ML.NET 示例:二元分类之用户评论的情绪分析

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  2. ABP module-zero +AdminLTE+Bootstrap Table+jQuery权限管理系统第十五节--缓存小结与ABP框架项目中 Redis Cache的实现

    返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期 缓存 为什么要用缓存 为什么要用缓存呢,说缓存之前先说使用缓存的优点. 减少寄宿服务器的往返调用(round-tr ...

  3. C#_面试

    class Program { static void Main(string[] args) { , , , , }; var arry = ConvertSum(arr); , , , , , } ...

  4. 研究C语言的新型编译环境TCC

    C语言综合研究1 搭建一个tcc环境 研究过程: 问题引出:为什么要使用tcc环境,甚至连图形界面都没有,为什么要使用这样的化境? 按照我们学习的本质来讲,可能是为了体验C语言底层的相关特性,但是在研 ...

  5. spring boot之mybatis配置

    配置在application.yml文件中 mybatis-plus: # 如果是放在src/main/java目录下 classpath:/com/yourpackage/*/mapper/*Map ...

  6. Natural Language Generation/Abstractive Summarization

    调研目的: 了解生成式文本摘要的常用技术和当前的发展趋势,明确当前项目有什么样的摘要需求,判断现有技术能否用于满足当前的需求,进一步明确毕业设计方向及其可行性 调研方向: 项目中需要用到摘要的地方以及 ...

  7. Laravel - 1

    Laravel - 1 Laravel是一个很强大又非常优雅的php框架,但是Laravel的很多组件都是由社区协作的结果,Composer是php开发的一个依赖管理工具,但是墙把绝大多数的开发者堵在 ...

  8. Maven的课堂笔记4

    9.Maven与MyEclipse2014结合 MyEclipse10以上的版本,对Maven支持的就比较好 9.2 Myeclipse配置 本地文件夹的C盘的.m2文件夹下必须得有这个setting ...

  9. 第八章Jdk代理 cglib代理

    什么是代理模式 代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象.这样做的好处是:可以在目标对象实现的基础上,增强额外的功能操作,即扩展目标对象的功能. 这 ...

  10. What Is Apache Hadoop

    What Is Apache Hadoop? The Apache™ Hadoop® project develops open-source software for reliable, scala ...