[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组
1.稍微修正以前局部使用的方程组可以得到真空中的 Maxwell 方程组: $$\beex \bea \Div {\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div {\bf B}&=0,\\ \rot{\bf B}&=\mu_0\sex{\ve_0\cfrac{\p{\bf E}}{\p t}+{\bf j}}. \eea \eeex$$ 与其相伴的有电荷守恒方程: $$\bex \cfrac{\p\rho}{\p t}+\Div{\bf j}=0. \eex$$
2.Maxwell 方程组具有本质重要性的是 $$\beex \bea \ve_0\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu_0}\rot{\bf B}&=-{\bf j},\\ \cfrac{\p{\bf B}}{\p t}+\rot {\bf E}=0. \eea \eeex$$ 事实上, $\Div{\bf E}=\cfrac{\rho}{\ve_0}$, $\Div{\bf B}=0$ 均可化为对初值应满足的附加条件. 证明: $$\beex \bea \cfrac{\p}{\p t}\sex{\Div{\bf E}-\cfrac{\rho}{\ve_0}} &=\Div \cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\ve_0}\cfrac{\p\rho}{\p t}=0,\\ \cfrac{\p }{\p t}\Div {\bf B}&=\Div\cfrac{\p{\bf B}}{\p t} =-\Div \rot{\bf E}=0. \eea \eeex$$
[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- Python开发【第五篇】内置函数
abs() 函数返回数字的绝对值 __author__ = "Tang" a = -30 all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为True,如果 ...
- json 解析错误的问题
“/”应用程序中的服务器错误. 未能加载文件或程序集“Newtonsoft.Json, Version=6.0.0.0, Culture=neutral, PublicKeyToken=30ad4fe ...
- 【转】JSON.parse() Unexpected token i in JSON at position 2 报错问题
JSON.parse(): Unexpected token i in JSON at position 2 报错问题 错误代码: var res = "[{id:1,name:'limin ...
- JSP七大动作
- mysql 相关命令
1.mysql导入导出 导出 进入到mysql bin目录 导出表 ./mysqldump -uroot -p --socket=/wdcloud/app/mysql1/temp/mysql.sock ...
- Zabbix 3.4.7针对一些主机设置期间维护
场景说明: 由于公司有些主机设置了定时开机关机,每次开机关机得时候都会发邮件告警,每次都需要值班人员提醒,为了处理这种无效告警,可以在zabbix中设置维护 zabbix中的维护---维护期间:用来设 ...
- appium框架之bootstrap
(闲来无事,做做测试..)最近弄了弄appium,感觉挺有意思,就深入研究了下. 看小弟这篇文章之前,先了解一下appium的架构,对你理解有好处,推荐下面这篇文章:testerhome appium ...
- webpack2.0 css文件引入错误解决及图片输出在根目录配置问题
webpack引入css文件,main.js内容如下 import Vue from 'vue'; import App from './App.vue'; import Mint from 'min ...
- MD 的常用语法格式
参考资料:MarkDown 语言常用语法 注意:vscode 中,可以使用 ctrl + shift + v 进行预览: 一.标题 一般使用 # 来进行层级标识.共 6 个层级,再多不识别. # = ...
- CSS概念,引入,选择器
概念 层叠样式表,定义如何显示HTML元素. 使用方式 行内样式 不推荐使用此方式 结构 和 样式的 杂糅会影响后期的维护 <p style="color: red"> ...