[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组
1.稍微修正以前局部使用的方程组可以得到真空中的 Maxwell 方程组: $$\beex \bea \Div {\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div {\bf B}&=0,\\ \rot{\bf B}&=\mu_0\sex{\ve_0\cfrac{\p{\bf E}}{\p t}+{\bf j}}. \eea \eeex$$ 与其相伴的有电荷守恒方程: $$\bex \cfrac{\p\rho}{\p t}+\Div{\bf j}=0. \eex$$
2.Maxwell 方程组具有本质重要性的是 $$\beex \bea \ve_0\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu_0}\rot{\bf B}&=-{\bf j},\\ \cfrac{\p{\bf B}}{\p t}+\rot {\bf E}=0. \eea \eeex$$ 事实上, $\Div{\bf E}=\cfrac{\rho}{\ve_0}$, $\Div{\bf B}=0$ 均可化为对初值应满足的附加条件. 证明: $$\beex \bea \cfrac{\p}{\p t}\sex{\Div{\bf E}-\cfrac{\rho}{\ve_0}} &=\Div \cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\ve_0}\cfrac{\p\rho}{\p t}=0,\\ \cfrac{\p }{\p t}\Div {\bf B}&=\Div\cfrac{\p{\bf B}}{\p t} =-\Div \rot{\bf E}=0. \eea \eeex$$
[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- 我的Spark SQL单元测试实践
最近加入一个Spark项目,作为临时的开发人员协助进行开发工作.该项目中不存在测试的概念,开发人员按需求进行编码工作后,直接向生产系统部署,再由需求的提出者在生产系统检验程序运行结果的正确性.在这种原 ...
- No FileSystem for scheme: hdfs问题
通过FileSystem.get(conf)初始化的时候,要通过静态加载来实现,其加载类的方法代码如下: private static FileSystem createFileSystem(URI ...
- CentOS 7 中使用NTP进行时间同步
1. NTP时钟同步方式说明NTP在linux下有两种时钟同步方式,分别为直接同步和平滑同步: 直接同步 使用ntpdate命令进行同步,直接进行时间变更.如果服务器上存在一个12点运行的任务,当前服 ...
- Vim配置(python版)
由于马上将用到django框架,需要有一个好的ide来coding,之前做C的开发时候体会到了vim的强大,所以编写python也决定采用vim. PS:除了vim,一般浏览代码多用atom和subl ...
- 【Codeforces 1000F】One Occurrence
题意:给一个序列,每次查询某个区间内一个只出现一次的数. 思路:线段树. 首先我们看只出现一次的本质是什么. 如果一个数\(x\)在\((l,r)\)中只出现了一次,那么它在其中第一次出现位置为\ ...
- GXOI/GZOI2019题解
GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include& ...
- 实现在线预览PDF的几种解决方案
因客户需要实现PDF的预览处理,在网上找了一些PDF在线预览的解决方案,有的用PDFJS的在线预览方式,有的使用PDFObject的嵌入式显示,有的通过转换JPG/PNG方式实现间接显示的方式,开始是 ...
- MySQL单向加密函数
select encode('pual','zhangxueliang'); select md5('zhangxueliang'); 加密为null,不显示字段值: select ENCRYPT(& ...
- matplotlib使用
import numpy as np import matplotlib.pyplot as plt 生成数据 mean1=[5,5] cov1=[[1,1],[1,1.5]] data=np.ran ...
- Activiti6作业执行器Job Executor配置(学习笔记)
内容概况: 异步执行配置相关: asyncExecutorActivate:这个属性是激活作业执行器,它的默认参数是false,只有设为true,activiti启动的时候才会开启线程池去扫描定时操作 ...