#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != )
{ readme(); return -; } Mat img_1 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = ; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = ; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); for( int i = ; i < good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } waitKey(); return ;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

OpenCV 使用FLANN进行特征点匹配的更多相关文章

  1. OpenCV使用FLANN进行特征点匹配

    使用FLANN进行特征点匹配 目标 在本教程中我们将涉及以下内容: 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Appr ...

  2. 《opencv学习》 之 特征检测与匹配

    这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看 ...

  3. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

  4. Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正

    图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...

  5. Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

    Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生 ...

  6. 第二篇 特征点匹配以及openvslam中的相关实现详解

    配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...

  7. 【macOS】 在OpenCV下训练Haar特征分类器

    本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...

  8. OpenCV教程(47) sift特征和surf特征

         在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...

  9. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

随机推荐

  1. import torch 报错

    1.进入官网   https://pytorch.org/ 2.复制command到anaconda环境,即可

  2. 和我一起从0学算法(C语言版)(三)

    第二章 暴力求解(枚举法) 第一节 小学奥数题-程序求解 观察下面的加法算式:       祥 瑞 生 辉   +   三 羊 献 瑞 -------------------    三 羊 生 瑞 气 ...

  3. Codeforces Round #571 (Unrated for Div. 1+Div. 2)

    A 略 B 被删了,被这个假题搞自闭了,显然没做出来. C 开始莽了个NTT,后来发现会TLE,其实是个SB前缀和,对于这题,我无**说. #include<bits/stdc++.h> ...

  4. TCP/IP与IETF的RFC

    究竟是谁控制着 TCP/IP协议族,又是谁在定义新的标准以及其他类似的事情?事实上, 有四个小组在负责Internet技术. 1) Internet协会(ISOC,Internet Society)是 ...

  5. LeetCode——560. 和为K的子数组

    给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数. 示例 1 : 输入:nums = [1,1,1], k = 2 输出: 2 , [1,1] 与 [1,1] 为两种不 ...

  6. 14)载入png图片

    1)之前在窗口中载入图片  一般都是bmp的  但是  我想从网上下一些图片,这些图片可能是png的 2)那么就有了下面的操作 3)png图片可以直接做成透明的. 4)首先是创建窗口的基本代码: #i ...

  7. 第2章 ZooKeeper安装与启动

    第2章 ZooKeeper安装 2-1 JDK的安装 需要先在Linux系统下安装JDK1.8 tar -zxvf jdk-8u231-linux-x64.tar.gz rm -f jdk-8u231 ...

  8. PAT Advanced 1056 Mice and Rice (25) [queue的⽤法]

    题目 Mice and Rice is the name of a programming contest in which each programmer must write a piece of ...

  9. 第7节 Arrays工具类

    package cn.itcast.day08.demo04; import java.util.Arrays; /*java.util.Arrays是一个与数组相关的工具类,里面提供了大量静态方法, ...

  10. git 提交部分修改的文件,以及如何撤回已经add的文件

    命令 1.git status //查看修改文件状态 ,可以看到哪些add了哪些没add 注意:如果此时出现了有些文件不想添加到暂存区却添加进去了,需要撤回 git reset HEAD 全部撤销gi ...