#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != )
{ readme(); return -; } Mat img_1 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = ; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = ; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); for( int i = ; i < good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } waitKey(); return ;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

OpenCV 使用FLANN进行特征点匹配的更多相关文章

  1. OpenCV使用FLANN进行特征点匹配

    使用FLANN进行特征点匹配 目标 在本教程中我们将涉及以下内容: 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Appr ...

  2. 《opencv学习》 之 特征检测与匹配

    这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看 ...

  3. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

  4. Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正

    图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...

  5. Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

    Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生 ...

  6. 第二篇 特征点匹配以及openvslam中的相关实现详解

    配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...

  7. 【macOS】 在OpenCV下训练Haar特征分类器

    本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...

  8. OpenCV教程(47) sift特征和surf特征

         在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...

  9. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

随机推荐

  1. Vmware 主机锁定模式

    https://docs.vmware.com/cn/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-88B24613-E8F9-40D ...

  2. 安装使用离线版本的维基百科(Wikipedia)

    1 相关背景 平常大家在上网查询一些基本概念的时候常常会参考维基百科上面的资料,但是由于方校长研制的GFW(长城防火墙系统)强大的屏蔽功能,好多链接打开以后,不出意外会出现著名的“404NOT FOU ...

  3. NOIp2017TG解题报告

    NOIp2018RP++! 虽然没去但还得写写QAQ D1T1 : 小凯的疑惑 数学题 手推几组数据然后发现规律 \(Ans = (a-1)(b-1)+1\) AC in 1minite D1T2 : ...

  4. [HNOI2019]白兔之舞(矩阵快速幂+单位根反演)

    非常抱歉,这篇文章鸽了.真的没时间写了. #include<bits/stdc++.h> using namespace std; typedef long long ll; #defin ...

  5. 【转】 java类的加载和执行顺序

    1.先执行Test类的静态代码块后执行Test类的main方法,说明要执行类的方法需要先加载这个类. 2.在创建ClassB的对象时,先去加载了父类ClassA.说明加载子类时如果没有加载父类,会先加 ...

  6. Windows10配置Jmeter环境

    注:在安装Jmeter之前,请先检查下电脑有没有装JDK:[Win+R]然后输入cmd->进入命令行界面,输入java -version 出现以下信息就是此电脑已安装了JDK.由于jmeter要 ...

  7. Django框架(一):MVC设计模式、Django简介

    1. MVC设计模式 MVC设计模式:Model-View-Controller简写. 最早由TrygveReenskaug在1978年提出,是施乐帕罗奥多研究中心(Xerox PARC)在20世纪8 ...

  8. scp 碰到的问题

    将 nodejs 的全局目录scp复制到另外一台机器部署代码, 发现运行报错, 提示缺少依赖模块. 检查了很久, 没发现问题. 后来发现,软链接 scp后不再是软链接而是对应文件, 导致相对路径改变!

  9. 5)PHP,可变变量

    所谓可变变量,就是一个变量的名,又是一个变量. 可变变量的语法是php的很特殊的语法——其他语言中少见. $v1 = “abc”; //这是一个字符串变量,其内容是字符串“abc” $abc = ; ...

  10. 吴裕雄--天生自然TensorFlow高层封装:Keras-多输入输出

    # 1. 数据预处理. import keras from keras.models import Model from keras.datasets import mnist from keras. ...