高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值。梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降。

在回归中,使用梯度下降来优化损失函数并获得系数。本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体。

按照损失函数的负梯度成比例地对系数(W 和 b)进行更新。根据训练样本的大小,有三种梯度下降的变体:

  1. Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度。该方法可能很慢并且难以处理非常大的数据集。该方法能保证收敛到凸损失函数的全局最小值,但对于非凸损失函数可能会稳定在局部极小值处。
  2. 随机梯度下降:在随机梯度下降中,一次提供一个训练样本用于更新权重和偏置,从而使损失函数的梯度减小,然后再转向下一个训练样本。整个过程重复了若干个循环。由于每次更新一次,所以它比 Vanilla 快,但由于频繁更新,所以损失函数值的方差会比较大。
  3. 小批量梯度下降:该方法结合了前两者的优点,利用一批训练样本来更新参数。

TensorFlow优化器的使用

首先确定想用的优化器。TensorFlow 为你提供了各种各样的优化器:

  • 这里从最流行、最简单的梯度下降优化器开始:

    GradientDescentOptimizer 中的 learning_rate 参数可以是一个常数或张量。它的值介于 0 和 1 之间。

    必须为优化器给定要优化的函数。使用它的方法实现最小化。该方法计算梯度并将梯度应用于系数的学习。该函数在 TensorFlow 文档中的定义如下:

    综上所述,这里定义计算图:

    馈送给 feed_dict 的 X 和 Y 数据可以是 X 和 Y 个点(随机梯度)、整个训练集(Vanilla)或成批次的。

  • 梯度下降中的另一个变化是增加了动量项。为此,使用优化器 tf.train.MomentumOptimizer()。它可以把 learning_rate 和 momentum 作为初始化参数:

     
  • 可以使用 tf.train.AdadeltaOptimizer() 来实现一个自适应的、单调递减的学习率,它使用两个初始化参数 learning_rate 和衰减因子 rho:

     
  • TensorFlow 也支持 Hinton 的 RMSprop,其工作方式类似于 Adadelta 的 tf.train.RMSpropOptimizer():

    Adadelta 和 RMSprop 之间的细微不同可参考 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 和 https://arxiv.org/pdf/1212.5701.pdf

  • 另一种 TensorFlow 支持的常用优化器是 Adam 优化器。该方法利用梯度的一阶和二阶矩对不同的系数计算不同的自适应学习率:

     
  • 除此之外,TensorFlow 还提供了以下优化器:

通常建议你从较大学习率开始,并在学习过程中将其降低。这有助于对训练进行微调。可以使用 TensorFlow 中的 tf.train.exponential_decay 方法来实现这一点。

根据 TensorFlow 文档,在训练模型时,通常建议在训练过程中降低学习率。该函数利用指数衰减函数初始化学习率。需要一个 global_step 值来计算衰减的学习率。可以传递一个在每个训练步骤中递增的 TensorFlow 变量。函数返回衰减的学习率。

变量:

  • learning_rate:标量float32或float64张量或者Python数字。初始学习率。
  • global_step:标量int32或int64张量或者Python数字。用于衰减计算的全局步数,非负。
  • decay_steps:标量int32或int64张量或者Python数字。正数,参考之前所述的衰减计算。
  • decay_rate:标量float32或float64张量或者Python数字。衰减率。
  • staircase:布尔值。若为真则以离散的间隔衰减学习率。
  • name:字符串。可选的操作名。默认为ExponentialDecay。

返回:

  • 与learning_rate类型相同的标量张量。衰减的学习率。

实现指数衰减学习率的代码如下:

推荐阅读

下面是讲解不同优化器的链接:

TensorFlow从0到1之TensorFlow优化器(13)的更多相关文章

  1. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  2. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  3. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  4. TensorFlow从0到1之TensorFlow超参数及其调整(24)

    正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...

  5. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  6. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

  7. TensorFlow从0到1之TensorFlow实现多元线性回归(16)

    在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...

  8. TensorFlow从0到1之TensorFlow实现简单线性回归(15)

    本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...

  9. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

随机推荐

  1. 【JUC】CyclicBarrier和Semaphore的使用

    CyclicBarrier的使用 CyclicBarrier:可以让一组检测到一个屏障时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有的屏障拦截的线程才会继续执行,线程进入屏障通过Cyclic ...

  2. Tortoise svn 基础知识

    1 不跟踪文件.文件夹 1.1  文件.文件夹已经被svn跟踪 将本地文件.文件夹删除(windows删除文件的删除,快捷键是shift+delete),然后执行svn  update 将服务器同步到 ...

  3. 问答题:你下班后是选择关电脑?Or,只关闭显示器?

    首百问答的答案:jingmentudou 因为你永远不知道什么时间会被叫醒.开个远程就能避免半夜去公司了. 月尧jade 干这一行的,电脑自按下开机键开始,除了驱动会自动启动外,你需要重新检查各大运行 ...

  4. Redis学习笔记(1)

    一.NoSQL基础知识 1. NoSQL概念 NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库.随着互联网web2.0网站的兴起,传统的关系数据库 ...

  5. Shell概述1

    Shell概述1 脚本文件内容(vim ex2) #!/bin/bash #If no arguments,then listing the current directory. #Otherwise ...

  6. Alpha冲刺 —— 5.4

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.展 ...

  7. Chisel3 - Tutorial - VendingMachineSwitch

    https://mp.weixin.qq.com/s/5lcMkenM2zTy-pYOXfRjyA   演示如何使用switch/is来实现状态机.   参考链接: https://github.co ...

  8. 数据库之 MySQL --- 数据处理 之 子查询 (二)

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一 .数据库语言定义及命令行查看数据库操作 -- SQL 语言可以分为三类-- DML: 数据操纵语言. ...

  9. Linux内核进程调度overview(1)

    一.概述 决定何时.如何选择一个新进程运行的这组规则叫做:调度策略(scheduling policy). Linux的调度是基于分时技术(time sharing):多个进程以“时间多路复用”方式运 ...

  10. Java实现 LeetCode 643 子数组最大平均数 I(滑动窗口)

    643. 子数组最大平均数 I 给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. 示例 1: 输入: [1,12,-5,-6,50,3], k = 4 输出: 12.7 ...