点此看题面

大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\)点到\(D\)点所需的最短时间。

什么是最优策略?

很显然,最优策略一定是在\(AB\)传送带上移动到某一个地方,然后步行到\(CD\)传送带的某一个地方,最后直接在\(CD\)传送带上移动到\(D\)。

三分套三分

不难发现,这是两个单谷函数,因此,我们可以对在\(AB\)传送带上移动的距离和\(CD\)传送带上移动的距离分别三分,然后合在一起,就变成了三分套三分,这样就能求出答案了。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define LL long long
#define swap(x,y) (x^=y,y^=x,x^=y)
using namespace std;
double Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,p,q,r,ans;
inline double check(double x,double y)//求出这种方案所需的时间
{
double P1x=Ax+(Bx-Ax)*x,P1y=Ay+(By-Ay)*x,P2x=Cx+(Dx-Cx)*y,P2y=Cy+(Dy-Cy)*y;//P1为在AB传送带上移动到的点,P2为开始在CD传送带上移动的点
return sqrt((P1x-Ax)*(P1x-Ax)+(P1y-Ay)*(P1y-Ay))/p+sqrt((Dx-P2x)*(Dx-P2x)+(Dy-P2y)*(Dy-P2y))/q+sqrt((P2x-P1x)*(P2x-P1x)+(P2y-P1y)*(P2y-P1y))/r;//计算出A到P1、P1到P2、P2到D分别所需的时间
}
inline double find2(double l,double r,double t1)//第2个三分,t1表示在AB传送带上移动的距离占AB传送带总长度的多少,l和r表示在CD传送带上移动的距离占CD传送带总长度的多少
{
double res=0.0;
while(r-l>=1e-6)
{
double mid1=l+(r-l)/3,mid2=l+(r-l)/3*2,res1=check(t1,mid1),res2=check(t1,mid2);
if(res1<res2) res=res1,r=mid2;
else res=res2,l=mid1;
}
return res;
}
inline void find1(double l,double r)//第1个三分,l和r表示在AB传送带上移动的距离占AB传送带总长度的多少
{
while(r-l>=1e-6)
{
double mid1=l+(r-l)/3,mid2=l+(r-l)/3*2,res1=find2(0,1,mid1),res2=find2(0,1,mid2);
if(res1<res2) ans=res1,r=mid2;
else ans=res2,l=mid1;
}
}
int main()
{
return scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf",&Ax,&Ay,&Bx,&By,&Cx,&Cy,&Dx,&Dy,&p,&q,&r),find1(0,1),printf("%.2lf",ans),0;//三分套三分即可求出答案
}

【BZOJ1857】传送带(分治经典:三分套三分)的更多相关文章

  1. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  2. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

  3. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  4. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  5. BZOJ 1857 传送带 (三分套三分)

    在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...

  6. [luogu2571][bzoj1857][SCOI2010]传送门【三分套三分】

    题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...

  7. loj10017. 「一本通 1.2 练习 4」传送带(三分套三分)

    题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...

  8. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  9. #10017 传送带(SCOI 2010)(三分套三分)

    [题目描述] 在一个 2 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 AB 和线段 CD.lxhgww 在 AB上的移动速度为 P ,在 CD 上的移动速度为 Q,在平 ...

随机推荐

  1. 2018宁夏邀请赛G(DFS,动态规划【VECTOR<PAIR>】)

    //代码跑的很慢四秒会超时,结尾附两秒代码(标程) #include<bits/stdc++.h>using namespace std;typedef long long ll;cons ...

  2. java整理(一)

    1.方法重载:方法名称相同,参数的类型或个数不同.但是返回值类型不同,不是方法重载. 2.引用数据类型:数组,类,接口.内存地址分为两类,栈内存和对内存.栈内存保存的是对内存的地址,简单理解就是保存了 ...

  3. tp5分页注意,分页生成的ul class是pagination,有些模板可能将pagination定义为display:none

    今天在调用分页时总是无法显示,查看网页源代码是正常的,后来发现是在css文件里将pagination定义为display:none,所以无法显示

  4. 虚拟机上安装Cell节点(12.1.2.3.3)

    安装介质下载 打开firefox,输入:https://edelivery.oracle.com 点击"Sign In",输入帐号.密码,登陆edelivery网站.       ...

  5. $.store.book[?(@.title =~ /^.*Honour.*$/i)]

    { "store": { "book": [ { "category": "reference", "auth ...

  6. POJ1045 Bode Plot

    题目来源:http://poj.org/problem?id=1045 题目大意: 如图所示的交流电路,假设电路处于稳定状态,Vs为电源电压,w是频率,单位为弧度每秒,t表示时间. 则:V1 = Vs ...

  7. unique key 唯一约束

    #添加唯一约束mysql> alter table tb2    -> add unique key(name)   ->;#删除唯一约束mysql> alter table ...

  8. js 中的 for 循环。。。

    for (var i in data){ data[i] } 和for (var i=0;i< data.length; i++){ data[i] } 第一种可能会有bug...

  9. 1089 Insert or Merge(25 分)

    According to Wikipedia: Insertion sort iterates, consuming one input element each repetition, and gr ...

  10. Asp.NET MVC+WebAPI跨域调用

    使用jQuery调用WebApi有时会遇到跨域的问题,今天介绍一种可以简单解决跨域问题的方法. 当我们跨域请求WebAPI的时候会提示以下信息: XMLHttpRequest cannot load ...