【BZOJ1857】传送带(分治经典:三分套三分)
大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\)点到\(D\)点所需的最短时间。
什么是最优策略?
很显然,最优策略一定是在\(AB\)传送带上移动到某一个地方,然后步行到\(CD\)传送带的某一个地方,最后直接在\(CD\)传送带上移动到\(D\)。
三分套三分
不难发现,这是两个单谷函数,因此,我们可以对在\(AB\)传送带上移动的距离和\(CD\)传送带上移动的距离分别三分,然后合在一起,就变成了三分套三分,这样就能求出答案了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define LL long long
#define swap(x,y) (x^=y,y^=x,x^=y)
using namespace std;
double Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,p,q,r,ans;
inline double check(double x,double y)//求出这种方案所需的时间
{
double P1x=Ax+(Bx-Ax)*x,P1y=Ay+(By-Ay)*x,P2x=Cx+(Dx-Cx)*y,P2y=Cy+(Dy-Cy)*y;//P1为在AB传送带上移动到的点,P2为开始在CD传送带上移动的点
return sqrt((P1x-Ax)*(P1x-Ax)+(P1y-Ay)*(P1y-Ay))/p+sqrt((Dx-P2x)*(Dx-P2x)+(Dy-P2y)*(Dy-P2y))/q+sqrt((P2x-P1x)*(P2x-P1x)+(P2y-P1y)*(P2y-P1y))/r;//计算出A到P1、P1到P2、P2到D分别所需的时间
}
inline double find2(double l,double r,double t1)//第2个三分,t1表示在AB传送带上移动的距离占AB传送带总长度的多少,l和r表示在CD传送带上移动的距离占CD传送带总长度的多少
{
double res=0.0;
while(r-l>=1e-6)
{
double mid1=l+(r-l)/3,mid2=l+(r-l)/3*2,res1=check(t1,mid1),res2=check(t1,mid2);
if(res1<res2) res=res1,r=mid2;
else res=res2,l=mid1;
}
return res;
}
inline void find1(double l,double r)//第1个三分,l和r表示在AB传送带上移动的距离占AB传送带总长度的多少
{
while(r-l>=1e-6)
{
double mid1=l+(r-l)/3,mid2=l+(r-l)/3*2,res1=find2(0,1,mid1),res2=find2(0,1,mid2);
if(res1<res2) ans=res1,r=mid2;
else ans=res2,l=mid1;
}
}
int main()
{
return scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf",&Ax,&Ay,&Bx,&By,&Cx,&Cy,&Dx,&Dy,&p,&q,&r),find1(0,1),printf("%.2lf",ans),0;//三分套三分即可求出答案
}
【BZOJ1857】传送带(分治经典:三分套三分)的更多相关文章
- 【BZOJ1857】[Scoi2010]传送带 三分套三分
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- bzoj1857: [Scoi2010]传送带--三分套三分
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...
- BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...
- [luogu2571][bzoj1857][SCOI2010]传送门【三分套三分】
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
- loj10017. 「一本通 1.2 练习 4」传送带(三分套三分)
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
- Bzoj 1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- #10017 传送带(SCOI 2010)(三分套三分)
[题目描述] 在一个 2 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 AB 和线段 CD.lxhgww 在 AB上的移动速度为 P ,在 CD 上的移动速度为 Q,在平 ...
随机推荐
- go语言web开发框架_Iris框架讲解(五)MVC包使用
在Iris框架中,封装了mvc包作为对mvc架构的支持,方便开发者遵循mvc的开发原则进行开发. iris框架支持请求数据.模型.持久数据分层处理,并支持各层级模块代码绑定执行. MVC即:model ...
- Yaf + Smarty 整合笔记
Yaf真的是太简单了,简单到使用mvc的时候在view里面需要手写php脚本.因此考虑整合一下smarty模板引擎.随心所欲也正是yaf的魅力 Yaf 安装 这里简单说一下yaf的安装,已经是非常无脑 ...
- hdu6069(简单数学+区间素数筛法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 给出 l, r, k.求:(lambda d(i^k))mod998244353,其中 ...
- 使用mount命令挂载CDROM
Linux显示所有的目录都在一个目录树下,而于他们位于哪一个驱动器/硬件无关.在Linux下的磁盘内容作为子目录形式出现的.可移动介质的内容不会自动出现在这些自目录的,我们必须通过挂载驱动器来实现. ...
- git 提交解决本地与远程冲突
首先介绍一下背景. 如果有一个工程A,开始时test.txt 的内容如下 chenfool hello world 作者通过 git clone 的方式,将这个项目download 到本地. 此时,作 ...
- 记一次工作中的小BUG
今天在调试代码的时候总是遇到一个bug,百思不得其解!先上bug图 我用的webapi 集成的swagger,错误提示是路由名称冲突,可我仔细检查了下并没有冲突的路由地址啊!于是上网查找资料,有位网友 ...
- 查询缓存及索引:MySQL系列之九
一.MySQL的架构 连接器 连接池,安全认证.线程池.连接限制.检查内存.缓存 SQL接口 DML.DDL SQL解析器,对SQL语句的权限检查.解析为二进制程序 优化器,优化访问路径 缓存cach ...
- mysql存储过程详解实例
mysql存储过程详解 1. 存储过程简介 我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的SQL ...
- 纯干货:Linux抓包命令集锦
/******************************************************************************************* 版权声明* 本 ...
- Dell 笔记本触摸板网页双指滑动黑屏
# 问题如题 # 解决方法: -- 在网上搜了解决方法,最靠谱的一个是说,开机进BIOS,然后什么都不修改退出,重启就能解决(但是我采用这种方法并没有解决) -- 我自己的解决方法:设备管理器里面卸载 ...