Circle and Points
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 8346   Accepted: 2974
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle. 
 
Fig 1. Circle and Points

Input

The input consists of a series of data sets, followed by a single line only containing a single character '0', which indicates the end of the input. Each data set begins with a line containing an integer N, which indicates the number of points in the data set. It is followed by N lines describing the coordinates of the points. Each of the N lines has two decimal fractions X and Y, describing the x- and y-coordinates of a point, respectively. They are given with five digits after the decimal point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0 <= Y <= 10.0. No two points are closer than 0.0001. No two points in a data set are approximately at a distance of 2.0. More precisely, for any two points in a data set, the distance d between the two never satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a data set are simultaneously very close to a single circle of radius one. More precisely, let P1, P2, and P3 be any three points in a data set, and d1, d2, and d3 the distances from an arbitrarily selected point in the xy-plane to each of them respectively. Then it never simultaneously holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For each data set, print a single line containing the maximum number of points in the data set that can be simultaneously enclosed by a circle of radius one. No other characters including leading and trailing spaces should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

Source

题意:给出n个点,问用一个单位圆最多能覆盖多少个点。
思路:把每一个点扩展成单位圆,相交圆会形成相交弧,只需要判断弧被覆盖的最大次数即可,因为弧如果被覆盖,那么以弧上的点为圆心,必然也能覆盖到原来点。

N^2枚举,保存每段弧的极角范围及端点方向,然后按上端点在前,下端点在后,从大到小对极角排序,从头扫描一遍。

若经过上端点:ans++ 否则:ans--,取ans最大值即可。

代码:

 //#include"bits/stdc++.h"
#include<sstream>
#include<iomanip>
#include"cstdio"
#include"map"
#include"set"
#include"cmath"
#include"queue"
#include"vector"
#include"string"
#include"cstring"
#include"time.h"
#include"iostream"
#include"stdlib.h"
#include"algorithm"
#define db double
#define ll long long
#define vec vectr<ll>
#define mt vectr<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i, n) for(int i=0;i<n;i++)
const int N = 1e4+ ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
struct P
{
db x,y;
db ang;
bool in;
};
P a[N],b[N];
db dis(P a,P b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int cmp(P a,P b){
if(a.ang==b.ang) return a.in>b.in;//上端点在前
return a.ang>b.ang;
}
int main()
{
int n;
while(scanf("%d",&n)==,n)
{
int ans=;
for(int i=;i<=n;i++) cd(a[i].x),cd(a[i].y);
for(int i=;i<=n;i++)
{
int p=;
for(int j=;j<=n;j++){
if(i==j||dis(a[i],a[j])>2.0+eps) continue;
db ang=atan2(a[i].x-a[j].x,a[i].y-a[j].y);//i于j的极角
db tha=acos(dis(a[i],a[j])/2.0);//极角波动范围
b[p].ang=ang+tha+*PI,b[p++].in=;//上端点
b[p].ang=ang-tha+*PI,b[p++].in=;//下端点
}
sort(b,b+p,cmp);
int tmp=;
for(int j=;j<p;j++){
if(b[j].in==) tmp++;
else tmp--;
ans=max(tmp,ans);
}
}
pi(ans);
}
return ;
}
 

POJ 1981 最大点覆盖问题(极角排序)的更多相关文章

  1. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. POJ 2280 Amphiphilic Carbon Molecules 极角排序 + 扫描线

    从TLE的暴力枚举 到 13313MS的扫描线  再到 1297MS的简化后的扫描线,简直感觉要爽翻啦.然后满怀欣喜的去HDU交了一下,直接又回到了TLE.....泪流满面 虽说HDU的时限是2000 ...

  3. POJ 1696 Space Ant 【极角排序】

    题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...

  4. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  5. POJ 2007 Scrambled Polygon [凸包 极角排序]

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8636   Accepted: 4105 ...

  6. poj 2007 凸包构造和极角排序输出(模板题)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10841   Accepted: 508 ...

  7. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  8. Space Ant--poj1696(极角排序)

    http://poj.org/problem?id=1696 极角排序是就是字面上的意思   按照极角排序 题目大意:平面上有n个点然后有一只蚂蚁他只能沿着点向左走  求最多能做多少点 分析:  其实 ...

  9. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

随机推荐

  1. Redis的原子自增性

    INCR key 将 key 中储存的数字值增一. 如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作. 如果值包含错误的类型,或字符串类型的值不能表示为数字,那 ...

  2. js之静态方法与实例方法

    静态方法是指不需要声明类的实例就可以使用的方法. 实例方法是指必须要先使用"new"关键字声明一个类的实例, 然后才可以通过此实例访问的方法. function staticCla ...

  3. Debug view 是个好工具

    有时候不用 VS 调试, 在 代码里面加入 Debug.Writeline(" Debug information!!");  这个时候打开 debug view 就可以检测出输出 ...

  4. Oracle的oci.dll加载错误解决办法

    开始 -> 程序 -> Oracle -> Configuration and Migration Tools -> Net Manager→本地→概要文件→Oracle高级安 ...

  5. Android设置TextView的行间距,EditText下划线

    textView用于显示文本,大量文字显示在一起显得过于紧凑.可通过在布局中更改TextView属性设置行间距. 1.android:lineSpacingMultiplier="1.5&q ...

  6. 微软RPC技术学习小结

    RPC,即Remote Procedure Call,远程过程调用,是进程间通信(IPC, Inter Process Communication)技术的一种.由于这项技术在自己所在项目(Window ...

  7. python模块详解 hashlib

    hashlib模块 用于加密相关的操作,在python3中替代了md5和sha模块,主要提供SHA和MD5算法. MD5 import hashlib m = hashlib.md5() #调用md5 ...

  8. MVC学习笔记:MVC实现用户登录验证ActionFilterAttribute用法并实现统一授权

    在项目下新建一个文件夹来专门放过滤器类,首先创建一个类LoginFilter,这个类继承ActionFilterAttribute.用来检查用户是否登录和用户权限.: using System; us ...

  9. 利用PCHunter结束各种进程

    http://www.epoolsoft.com/ 经测试,可结束主动防御等.

  10. phpStudy-在使用phpMyAdmin报404Error

    今天刚刚知道什么是phpStudy和phpMyAdmin,感觉还可以吧.熬到凌晨两点多就为看这点东西.结果不知道怎么回事,当我在网上转一圈回来后发现自己的数据管理器竟然进不进去了! 神马情况啊?我的解 ...