Coursera在线学习---第九节(2).推荐系统
一、基于内容的推荐系统(Content Based Recommendations)
所谓基于内容的推荐,就是知道待推荐产品的一些特征情况,将产品的这些特征作为特征变量构建模型来预测。比如,下面的电影推荐,就是电影分为"爱情电影"、“动作电影”一些特征来进行预测。
上述例子,将电影的内容特征作为特征变量X1,X2,这些电影特征是预先已知的,用户对电影的打分作为y值。比如一用户对100个电影都做了打分,那对于该用户就有了100个样本值,从而可以利用线性回归求解出该用户对应的参数Θ值,这样每一个用户都有自己参数Θ。
二、协同过滤系统(Collaborative Filtering)
像上述产品的内容特征其实往往是预先不知道的,这个是比较困难的,那怎么办呢?采用协同过滤系统,所谓协同过滤系统,就比如选出用户对电影的打分,来估出相应的的参数Θ值,进而再利用线性回归算出相应的电影特征值,根据特征值再次学习出Θ值,循环反复直到收敛,将会得到一组不错的Θ值与产品特征值。其实也就是用户帮助模型学习特征,这些特征也可以用来对其他人进行预测,另一层意思就是说大家都在为大家的利益学习出更好的特征。
当然,上述描述的循环反复不断学习实践起来会比较麻烦,有一个一劳永逸的方法,可以同时学习出Θ值与特征变量,如下图:
三、计算两个产品的相似性。
四、均值归一化
所谓均值归一化,就是把每一个电影归一化为平均评分为0。因为存在一种情况某一用户对任何一个电影都没有打过分,这个时候该用户对应的Θ学出来就全是0,因为在优化的时候,由于没有对任何电影打分,就相当于没有一个样本,只是优化了正则参数Θ1^2+Θ2^2+...+Θn^2,这样求解出最小值必然Θ=[0,0,0...,0],这样进行预测的时候,该用户对电影的评分也必然全部为0,没什么意义了。所以就需要均值归一化。具体如下图:
如上图所示,采用了均值归一化后,预测完成后都要再加上均值变量。这样如果遇到上述描述的没有打过分的用户,预测后即使为0,再加上均值向量后,打分就变成了均值分数了。这样从理论上也说得通,如果一个用户从没打过分,也就是没有该用户的任何兴趣倾向信息,那么我们就认为该用户对此电影的兴趣就为一个中间值比较合理。
Coursera在线学习---第九节(2).推荐系统的更多相关文章
- Coursera在线学习---第九节(1).异常数据检测(Anomaly Detection)
一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选 ...
- Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...
- Coursera在线学习---第二节.Octave学习
1)两个矩阵相乘 A*B 2)两个矩阵元素位相乘(A.B矩阵中对应位置的元素相乘) A.*B 3)矩阵A的元素进行平方 A.^2 4)向量或矩阵中的元素求倒数 1./V 或 1./A 5) ...
- Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)
一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体 ...
- Coursera在线学习---第六节.构建机器学习系统
备: High bias(高偏差) 模型会欠拟合 High variance(高方差) 模型会过拟合 正则化参数λ过大造成高偏差,λ过小造成高方差 一.利用训练好的模型做数据预测时,如果效果不好 ...
- Coursera在线学习---第五节.Logistic Regression
一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...
- Coursera在线学习---第四节.过拟合问题
一.解决过拟合问题方法 1)减少特征数量 --人为筛选 --靠模型筛选 2)正则化(Regularization) 原理:可以降低参数Θ的数量级,使一些Θ值变得非常之小.这样的目的既能保证足够的特征变 ...
- Coursera在线学习---第七节.支持向量机(SVM)
一.代价函数 对比逻辑回归与支持向量机代价函数. cost1(z)=-log(1/(1+e-z)) cost0(z)=-log(1-1/(1+e-z)) 二.支持向量机中求解代价函数中的C值相当于 ...
- Coursera在线学习---第八节.K-means聚类算法与主成分分析(PCA)
一.K-means聚类中心初始化问题. 1)随机初始化各个簇类的中心,进行迭代,直到收敛,并计算代价函数J. 如果k=2~10,可以进行上述步骤100次,并分别计算代价函数J,选取J值最小的一种聚类情 ...
随机推荐
- 在线api查询网站
1.包含各种常用的语言 http://tool.oschina.net/apidocs
- cacti设置redis监控端口
1.在Console->Data Templates中选择Redis的模版 在custom Data中勾选中Port2并保存 2.在Console->Data Input Methods中 ...
- js 控制
js 制动控制 代码 是 :setInterval(function(){$(".egg").click();},1000); 使用方法:调出浏览器放控制台(console),一般 ...
- perf打印调用栈的过程
perf_prepare_sample-->perf_callchain-->get_perf_callchain 上面的调用栈会使用 perf_event_output--> 0x ...
- EJB介绍
EJB定义: 被称为java企业bean,服务器端组件,核心应用是部署分布式应用程序.用它部署的系统不限定平台.实际上EJB是一种产品,描述了应用组件要解决的标准. 标准: 可扩展 (Scalable ...
- WPF中DataGrid的应用-绑定,增改删,分页,样式
参考以下网址: http://www.cnblogs.com/fwbnet/archive/2012/05/08/2490974.html
- 【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp
题目描述 经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统 ...
- CF757G Can Bash Save the Day?
CF757G Can Bash Save the Day? #include<bits/stdc++.h> #define RG register #define IL inline #d ...
- BZOJ2732:[HNOI2012]射箭——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2732 https://www.luogu.org/problemnew/show/P3222#su ...
- IDEA_MyBatis_SQLException:Parameter index out of range坑
报错信息:超出数据库数据表设定的规定长度了 nested exception is org.apache.ibatis.type.TypeException: Could not set parame ...