3754: Tree之最小方差树

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 402  Solved: 152
[Submit][Status][Discuss]

Description

Wayne在玩儿一个很有趣的游戏。在游戏中,Wayne建造了N个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M对城市间能修公路,即有若干三元组 (Ui,Vi,Ci)表示Ui和Vi间有一条长度为Ci的双向道路。当然,游戏保证了,若所有道路都修建,那么任意两城市可以互相到达。Wayne拥有恰好N-1支修建队,每支队伍能且仅能修一条道路。当然,修建长度越大,修建的劳累度也越高,游戏设定是修建长度为C的公路就会有C的劳累度。当所有的队伍完工后,整个城市群必须连通,而这些修建队伍们会看看其他队伍的劳累情况,若劳累情况差异过大,可能就会引发骚动,不利于社会和谐发展。Wayne对这个问题非常头疼,于是他想知道,这N1支队伍劳累度的标准差最小能有多少。
标准差的定为:设有N个数,分别为ai,它们的平均数为 ,那么标准差就是
 
 

Input

第一行两个正整数N,M
接下来M行,每行三个正整数Ui,Vi,Ci
 

Output

输出最小的标准差,保留四位小数。

Sample Input

3 3
1 2 1
2 3 2
3 1 3

Sample Output

0.5000

HINT

N<=100,M<=2000,Ci<=100
 

Source

 

[Submit][Status][Discuss]

HOME Back

此题要最小化$\sqrt{\frac{\sum\limits_{a_i\in S}(a_i-\bar a)^2}{n-1}}$等价于最小化$\sum\limits_{a_i\in S}(a_i-\bar a)^2$ 其中S中的所有边组成一个生成树

设$f(x)=\sum\limits_{a_i\in S}(a_i-x)^2$,则$f(x)=\sum\limits_{a_i \in S}(x^2-2*a_i*x+a_i^2)$其中当$x=\bar a$时取得最小值。

所以可以枚举平均值x,然后求最小生成树,求出来的边如果平均值不等于x。当枚举到他们的平均值时,答案一定比当前小,统计最小值即可。

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 105
#define M 2010
#define sqr(x) ((x)*(x))
using namespace std;
int n,m,tot,f[N];double ans=1e9;
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
struct edge{int x,y,c;double w;}e[M];
inline bool operator<(edge x,edge y){return x.w<y.w;}
double solve()
{
for(int i=;i<=n;i++)f[i]=i;
int tot=;double sum=;
for(int i=;tot!=n-;i++)
{
int fx=find(e[i].x),fy=find(e[i].y);
if(fx==fy)continue;
tot++;
f[fx]=fy;
sum+=e[i].w;
}
return sum;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].c),e[i].w=e[i].c;
int Min,Max;
sort(e+,e+m+);
Min=solve();
reverse(e+,e+m+);
Max=solve();
for(int i=Min;i<=Max;i++)
{
double ave=i*1.0/(n-);
for(int j=;j<=m;j++)
e[j].w=sqr(e[j].c-ave);
sort(e+,e+m+);
ans=min(ans,solve());
}
printf("%.4lf\n",sqrt(ans/(n-)));
}

[BZOJ3754]Tree之最小方差树的更多相关文章

  1. [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

    [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000 ...

  2. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  3. bzoj3754 Tree之最小方差树 最小生成树+推性质

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...

  4. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  5. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

  6. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  7. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  8. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  9. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

随机推荐

  1. 报错注入分析之Extractvalue分析

    Extractvalue(这单词略长,拆分记忆法extract:提取物 value:值) 上一篇说的是updatexml.updatexml是修改的.而evtractvalue是查询的. 用法与upd ...

  2. Nagios

    什么是Nagios? Nagios是一款用于系统和网络监控的应用程序.它可以在你设定的条件下对主机和服务进行监控, 在状态变差和变好的时候给出告警信息. Nagios更进一步的特征包括: 1. 监控网 ...

  3. websocket业务代码

    需求 用户登陆后,服务器实时推送用户的订单提醒,用websocket处理. 方案 两个js,notify-socket.js处理socket的连接,和socket的处理. nofify.js,做右下角 ...

  4. shell:遍历目录和子目录的所有文件

    #!/bin/bash function getdir(){ ` do dir_or_file=$"/"$element if [ -d $dir_or_file ] then g ...

  5. $_session (应用)

    登录: 封装类(用于连接数据库)代码中创建一个对象最好可以重复使用 <?php class DBDA { public $host="localhost"; public $ ...

  6. redirect问题

    场景如下: 在后台写了一个filter,拦截*.wx的请求,filter内逻辑忽略,最后response.sendRedirect(url)(这个url是相对地址),重定向到另一个页面. 问题来了:一 ...

  7. oracleDBA-D4

    1.数据字典: 创建和维护的可修改的系统表..它存放有关数据库和数据库对象的信息. 数据字典=基表+字典视图 2.数据字典所存放的信息: 数据库的逻辑和物理结构(如:表空间和数据文件),数据对象定义的 ...

  8. Ajax文件上传

  9. HTML5窗口间同域和跨域的通信

    一丶同域下的 1.如果我们要操作iframe里面的元素,首先获取到引入的页面的window.获取iframe里面的window对象. var oIframe=getElementsByTagName( ...

  10. Oracle执行计划详解

    Oracle执行计划详解 --- 作者:TTT BLOG 本文地址:http://blog.chinaunix.net/u3/107265/showart_2192657.html --- 简介:   ...