题目大意:给定一行n个正整数a[1]..a[n]。m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。

因为gcd满足交换律和结合律,所以用线段树维护区间上的gcd值即可。

#include <cstdio>
#include <cstring>
using namespace std; const int MAX_RANGE = 1010; int GetGcd(int a, int b)
{
return b ? GetGcd(b, a % b) : a;
} struct GcdRangeTree
{
private:
int Gcd[MAX_RANGE * 4];
int N; void PullUp(int cur)
{
Gcd[cur] = GetGcd(Gcd[cur * 2], Gcd[cur * 2 + 1]);
} void Init(int cur, int sl, int sr, int *a)
{
if (sl == sr)
{
Gcd[cur] = a[sr];
return;
}
int mid = (sl + sr) / 2;
Init(cur * 2, sl, mid, a);
Init(cur * 2 + 1, mid + 1, sr, a);
PullUp(cur);
} int Query(int cur, int sl, int sr, int al, int ar)
{
//printf("cur(%d,%d) find(%d,%d)\n", sl, sr, al, ar);
if (al <= sl && sr <= ar)
return Gcd[cur];
int ans=0, mid = (sl + sr) / 2;
if (al <= mid)
ans = Query(cur * 2, sl, mid, al, ar);
if (ar > mid)
{
if (ans)
ans = GetGcd(ans, Query(cur * 2 + 1, mid + 1, sr, al, ar));
else
ans = Query(cur * 2 + 1, mid + 1, sr, al, ar);
}
return ans;
} public:
GcdRangeTree(int n, int *a)
{
N = n;
memset(Gcd, 0, sizeof(Gcd));
Init(1, 1, N, a);
} int Query(int l, int r)
{
return Query(1, 1, N, l, r);
}
}; int main()
{
int range, opCnt;
static int a[MAX_RANGE];
scanf("%d%d", &range, &opCnt);
for (int i = 1; i <= range; i++)
scanf("%d", a + i);
static GcdRangeTree g(range, a);
while (opCnt--)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", g.Query(l, r));
}
return 0;
}

  

luogu1890 gcd区间的更多相关文章

  1. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  2. HDU 5726 GCD 区间GCD=k的个数

    GCD Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. P1890 gcd区间

    P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...

  4. 洛谷——P1890 gcd区间

    P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...

  5. 洛谷P1890 gcd区间 [2017年6月计划 数论09]

    P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...

  6. 洛谷1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...

  7. 洛谷P1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...

  8. luoguP1890 gcd区间 [st表][gcd]

    题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...

  9. UESTC - 1724 GCD区间求和

    依然是神奇的欧拉函数 若GCD(n,i)=k 则GCD(n/k,i/k)=1, 令i/k=x,有GCD(n/k,x)=1, →k*GCD(n/k,x)=1中x的个数 = GCD(n,i)=k的和 范围 ...

随机推荐

  1. Java 开源博客 Solo 1.2.0 发布 - 一键启动

    Solo 1.2.0 正式发布了,感谢一直以来关注 B3log 开源的朋友! 在这个版本中,我们引入了一个新的特性 -- 独立模式: 不需要安装数据库.Servlet 容器 只需要安装好 Java 环 ...

  2. Android 清空缓存

    APP开发中常有计算缓存大小和清空缓存的功能,此功能很常见,几乎每个应用都能看到,下面就用代码来实现此功能: 步骤为: 1.获取缓存路径 获取长时间保存的文件,Context.getExternalF ...

  3. Android_传感器光学

    上一篇写了一个小案例方向传感器,与这光学传感器原理大致类似,但其实代码的主要区别得到的类型不一样在这里我一一列举出来: * Sensor.TYPE_ORIENTATION:方向传感器. * Senso ...

  4. word中选择嵌入式时图片被遮住,只显示小部分的解决方法

    选中图片,点击如下 选择  行距选项 将行距改为单位行距即可.

  5. js动态操作订单表格

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. 黑客常用dos命令

    http://blog.csdn.net/CSDN___LYY/article/details/77802438

  7. 图像局部显著性—点特征(GLOH)

    基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. 相关介绍:局部特征显著性-点特征(SIF ...

  8. swift里 as、as!、as?区别 T.Type与动态类型

    as 1.编译器进行类型转换合法性检查:静态 let cell = collectionView.dequeueReusableCell(withReuseIdentifier: shoppingLi ...

  9. 微信小程序开发常用方法

    1.函数中访问data中的数据 _this.setData({ // 日历数据 signList: dataList, // 当前日期 todayDay: str }) 2.if判断 wx:if=&q ...

  10. Got permission denied while trying to connect to the Docker daemon socket at unix

    拉取Dockerimages时错误信息如下: [master@localhost ~]$ docker pull redis Using default tag: latest Got permiss ...