02-19 k近邻算法(鸢尾花分类)
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
k近邻算法(鸢尾花分类)
一、导入模块
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.font_manager import FontProperties
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
二、获取数据
iris_data = datasets.load_iris()
X = iris_data.data[:, [2, 3]]
y = iris_data.target
label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
三、构建决策边界
def plot_decision_regions(X, y, classifier):
# 构造颜色映射关系
marker_list = ['o', 'x', 's']
color_list = ['r', 'b', 'g']
cmap = ListedColormap(color_list[:len(np.unique(y))])
# 构造网格采样点并使用算法训练阵列中每个元素
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 # 第0列的范围
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 # 第1列的范围
t1 = np.linspace(x1_min, x1_max, 666) # 横轴采样多少个点
t2 = np.linspace(x2_min, x2_max, 666) # 纵轴采样多少个点
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T) # 预测值
y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
# 通过网格采样点画出等高线图
plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)
plt.xlim(x1.min(), x1.max())
plt.ylim(x2.min(), x2.max())
for ind, clas in enumerate(np.unique(y)):
plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
四、训练模型
knn = KNeighborsClassifier(n_neighbors=10, p=2) # p=2为欧几里得距离;p=1为曼哈顿距离
knn.fit(X, y)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=10, p=2,
weights='uniform')
五、构图
plot_decision_regions(X, y, classifier=knn)
plt.xlabel('花瓣长度(cm)', fontproperties=font)
plt.ylabel('花瓣宽度(cm)', fontproperties=font)
plt.legend(prop=font)
plt.show()
_10_0.png?x-oss-process=style/watermark)
02-19 k近邻算法(鸢尾花分类)的更多相关文章
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
- 第4章 最基础的分类算法-k近邻算法
思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...
- 02-16 k近邻算法
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 分类算法----k近邻算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)
六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...
- 机器学习(四) 分类算法--K近邻算法 KNN (上)
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
随机推荐
- OPENLDAP 服务搭建和后期管理
LDAP 服务 本文首发:https://www.cnblogs.com/somata/p/OPENLDAPServerConfigAndPostManagement.html 本文主要在debian ...
- HDFS的快照原理和Hbase基于快照的表修复
前一篇文章<HDFS和Hbase误删数据恢复>主要讲了hdfs的回收站机制和Hbase的删除策略.根据hbase的删除策略进行hbase的数据表恢复.本文主要介绍了hdfs的快照原理和根据 ...
- Linux之正则表达式grep
真好!
- 【python】requests模块初探(一)
一.写在前面 Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完 ...
- 11-常用SQL总结
1.设置表的列不能为nullalter table run.dbo.T1 alter column Col1 int not null 2.给表添加主键alter table run.dbo.T1 a ...
- Ubuntu18.04直接安装python3.7或者升级自带的python3.6版本之后导致终端无法打开的解决办法
安装ptyhon3.7 sudo apt-get update sudo apt-get install python3.7 安装成后的目录在/usr/bin/python3.7,同时将其设置成默认 ...
- mysql修改数据库的存储引擎(InnoDB)
查看当前的存储引擎 show engines; 基本的差别:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.MyISAM类型的表强调的是性能,其执行数度比InnoDB类型更快,但是不 ...
- Python学习笔记整理总结【Django】:Model操作(二)
1.操作汇总 # 增 # # models.Tb1.objects.create(c1='xx', c2='oo') 增加一条数据,可以接受字典类型数据 **kwargs # obj = models ...
- ajax跨域问题以及解决方案
转:https://blog.csdn.net/csdn_ds/article/category/6937392/3 在工作中,大家应该都遇到过ajax跨域问题,浏览器的错误如下: XMLHttpRe ...
- redis-分布式锁-刷新信号量
为什么需要刷新信号量呢,因为信号量有过期时间: 为什么信号量需要过期时间呢,因为需要利用超时特性,解决分布式锁存在的一些固有缺陷. 而对于类似流式API来说,一般10秒的过期时间是远远不够的.因此我们 ...