【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流
题目描述
输入
输出
一个整数表示联盟里所有球队收益之和的最小值。
样例输入
3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1
样例输出
43
题解
费用流
由于存在一个赢一个输,比较难算。我们可以先假设它们都输掉,然后再安排赢的情况。
设fi为i还要打的比赛数目,那么初始的收益为∑ci*wi^2+di*(li+fi)^2。
S->每场比赛,容量为1,费用为0。
每场比赛->比赛的两队,容量为1,费用为0。
因为费用的改变是包含平方的,所以我们需要拆边来做。
第i支队伍向T连fi条边,容量均为1,第j条边表示赢j场比赢j-1场多出来的收益,所以费用应为ci*(wi+j)^2+di*(wi+fi-j)^2-ci*(li+j-1)^2-di*(li+j+1)^2。
这里为了方便,直接把fi加到了li中。
然后跑最小费用最大流,加上之前的初始收益即为答案。
#include <cstdio>
#include <cstring>
#include <queue>
#define N 10010
#define M 3500000
using namespace std;
queue<int> q;
int w[N] , l[N] , c[N] , d[N] , x[N] , y[N] , f[N];
int head[N] , to[M] , val[M] , cost[M] , next[M] , cnt = 1 , s , t , dis[N] , from[N] , pre[N];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int mincost()
{
int i , k , ans = 0;
while(spfa())
{
k = 0x7fffffff;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
ans += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
return ans;
}
int main()
{
int n , m , i , j , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = m + n + 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d%d%d" , &w[i] , &l[i] , &c[i] , &d[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x[i] , &y[i]) , f[x[i]] ++ , f[y[i]] ++ , l[x[i]] ++ , l[y[i]] ++ ;
for(i = 1 ; i <= n ; i ++ ) ans += c[i] * w[i] * w[i] + d[i] * l[i] * l[i];
for(i = 1 ; i <= m ; i ++ ) add(s , i , 1 , 0) , add(i , x[i] + m , 1 , 0) , add(i , y[i] + m , 1 , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= f[i] ; j ++ )
add(i + m , t , 1 , c[i] * (2 * w[i] + 2 * j - 1) - d[i] * (2 * l[i] - 2 * j + 1));
printf("%d\n" , ans + mincost());
return 0;
}
【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流的更多相关文章
- 【BZOJ1449/2895】[JSOI2009]球队收益/球队预算 最小费用最大流
[BZOJ2895]球队预算 Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Ci*x^2+Di*y^2,Di<=C ...
- 【BZOJ-1449&2895】球队收益&球队预算 最小费用最大流
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 648 Solved: 364[Submit][Status][ ...
- 【BZOJ1449&&2895】球队预算 [费用流]
球队预算 Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 在一个篮球联赛里,有n支球队, 球 ...
- 「JSOI2009」球队收益 / 球队预算
题目链接 戳我 \(Solution\) 我们发现这道题目并不好做,因为要考虑两个因素对答案的影响.于是我们假设接下来的\(m\)场比赛双方都输了.这要我们就只要考虑赢一场对答案的影响了,那每赢一场输 ...
- bozj 1449/2895: 球队预算 -- 费用流
2895: 球队预算 Time Limit: 10 Sec Memory Limit: 256 MB Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体 ...
- 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)
题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...
- 【题解】JSOI2009球队收益 / 球队预算
为什么大家都不写把输的场次增加的呢?我一定要让大家知道,这并没有什么关系~所以 \(C[i] <= D[i]\) 的条件就是来卖萌哒?? #include <bits/stdc++.h&g ...
- BZOJ 1449 球队收益(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1449 题意: 思路:首先,我们假设后面的M场比赛两方都是输的,即初始时的lose[i]再 ...
- BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 提示 要求总费用最低 ...
随机推荐
- python基础教程总结15——4 新闻聚合
NNTP:网络新闻传输协议,Network News Transfer Protocol 目标: 从多种不同的来源收集新闻: 用户可以轻松添加新的新闻来源(甚至是新类型的新闻来源: 程序可以将编译好的 ...
- ABAP system landscape和vue项目webpack构建的最佳实践
基于Netweaver的ABAP transport route一般都有dev,test和prod三种类型的系统. 而Vue前端项目的webpack build设置也类似. 以SAP成都研究院数字创新 ...
- opencv中mat矩阵如何debug
mat img 看type:img.type() rows:img.rows cols:img.cols channels:img.channels(),channels()这是一个函数,和上面两个有 ...
- Ubuntu编译Android源码过程中的空间不足解决方法
Android源码一般几十G,就拿Android5.0来说,下载下来大概也有44G左右,和编译产生的文件以及Ubuntu系统占用的空间加起来,源码双倍的空间都不够有.编译源码前能分配足够的空间再好不过 ...
- 四种UNIX实现
四种UNIX实现:FreeBSD 5.2.1 Linux 2.4.22 mac OS X 10.3 Solaris 9 ubuntu 属于哪一种呢?
- ovx openVirtex的阅读文档
由于flowvisor只有4个版本, 最新更新都是2013年的, 跟底层ovs版本不跟进, 最近斯坦福post一个 ovx, 猜测是flowvisor的加强版, 所以看一下文档说明 文档详见http: ...
- 远程连接 mySql数据库
远程连接 mySql数据库 一.安装并配置MySQL1.安装MySQL:运行mysql-essential-6.0.11-alpha-win32,按“MySQL+6.0+Windows下安装图解”完成 ...
- 个人对spring的IOC+DI的封装
暂时支持8种基本数据类型,String类型,引用类型,List的注入. 核心代码 package day01; import java.lang.reflect.Field;import java.l ...
- 初涉网络流[EK&dinic]
主要还是板子 Edmonds-Karp 从S开始bfs,直到找到一条到达T的路径后将该路径增广,并重复这一过程. 在处理过程中,为了应对“找到的一条路径把其他路径堵塞”的情况,采用了建反向弧的方式来实 ...
- 概括的描述一下Spring注册流程
Spring经过大神们的构思.编码,日积月累而来,所以,对其代码的理解也不是一朝一夕就能快速完成的.源码学习是枯燥的,需要坚持!坚持!坚持!当然也需要技巧,第一遍学习的时候,不用关注全部细节,不重要的 ...