下称0类为单边,1类为互生边,2类为互斥边。对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2。于是有一个显然的dp,即设f[S1][S2]为左边选取S1右边选取S2对答案的贡献。转移时考虑S1中编号最小的点x与右边的点y匹配。首先将f[S1-(1<<x)][S2-(1<<y)]统计进去。然后若(x,y)是单边,或者虽存在互生互斥关系,但其对应边的左端点还不在S1中或就是x,或右端点还不在S2中或就是y,就不管了;否则若互斥将f[S1-(1<<x)-(1<<x')][S2-(1<<y)-(1<<y')]减掉,若互生将f[S1-(1<<x)-(1<<x')][S2-(1<<y)-(1<<y')]加上,其中(x',y')是(x,y)的对应边。这样大概就是C(30,15)*15的。

  但是这只有暴力20分,甚至连空间都开不下。然而满分做法和他是一个复杂度的。对上面的做法改为记忆化搜索,map存储状态就可以了。多了log也多了80分。不是非常理解意义何在。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define N 15
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,typ[N][N],match[N][N][],s[<<N];
map<int,int> f;
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
inline int trans(int n,int m){return n<<N|m;}
int solve(int i,int j)
{
if (f.find(trans(i,j))!=f.end()) return f[trans(i,j)];
int x=i&-i,ans=;
for (int t=j,k=t&-t;t;t^=k,k=t&-t)
if ((k&j)&&typ[s[x]][s[k]]>=)
{
inc(ans,solve(i^x,j^k));
int u=match[s[x]][s[k]][],v=match[s[x]][s[k]][];
if ((u&i)&&(v&j)&&x!=u&&k!=v)
{
if (typ[s[x]][s[k]]==) inc(ans,solve(i^x^u,j^k^v));
if (typ[s[x]][s[k]]==) inc(ans,P-solve(i^x^u,j^k^v));
}
}
f[trans(i,j)]=ans;return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5006.in","r",stdin);
freopen("bzoj5006.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(typ,,sizeof(typ));
for (int i=;i<=m;i++)
{
int op=read(),x=read()-,y=read()-;
if (op==) typ[x][y]=;
else
{
int p=read()-,q=read()-;
typ[x][y]=typ[p][q]=op;
match[x][y][]=<<p,match[x][y][]=<<q;
match[p][q][]=<<x,match[p][q][]=<<y;
}
}
for (int i=;i<n;i++) s[<<i]=i;
f[]=;
cout<<solve((<<n)-,(<<n)-);
return ;
}

BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)的更多相关文章

  1. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  2. BZOJ3925: [Zjoi2015]地震后的幻想乡【概率期望+状压DP】

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  3. 2018.09.23 bzoj1076: [SCOI2008]奖励关(期望+状压dp)

    传送门 一道神奇的期望状压dp. 用f[i][j]f[i][j]f[i][j]表示目前在第i轮已选取物品状态为j,从现在到第k轮能得到的最大贡献. 如果我们从前向后推有可能会遇到不合法的情况. 所以我 ...

  4. 【xsy1596】旅行 期望+状压DP

    题目大意:有$m$个人要从城市$1$开始,依次游览城市$1$到$n$. 每一天,每一个游客有$p_i$的概率去下一个城市,和$1-p_i$的概率结束游览. 当游客到达城市$j$,他会得到$(1+\fr ...

  5. [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)

    https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...

  6. “景驰科技杯”2018年华南理工大学程序设计竞赛 A. 欧洲爆破(思维+期望+状压DP)

    题目链接:https://www.nowcoder.com/acm/contest/94/A 题意:在一个二维平面上有 n 个炸弹,每个炸弹有一个坐标和爆炸半径,引爆它之后在其半径范围内的炸弹也会爆炸 ...

  7. 状压DP小拼盘

    有的DP题,某一部分的状态只有两种,选或不选. 开数组记录,代价太大,转移不方便. 状态压缩意为,用 “0/1“ 表示 “选/不选“ . 把状态表示为二进制整数. There are 10 kinds ...

  8. [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP

    分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...

  9. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

随机推荐

  1. java多线程系列(一)---多线程技能

    java多线程技能 前言:本系列将从零开始讲解java多线程相关的技术,内容参考于<java多线程核心技术>与<java并发编程实战>等相关资料,希望站在巨人的肩膀上,再通过我 ...

  2. 【厚积薄发】Crunch压缩图片的AssetBundle打包

    这是第133篇UWA技术知识分享的推送.今天我们继续为大家精选了若干和开发.优化相关的问题,建议阅读时间10分钟,认真读完必有收获. UWA 问答社区:answer.uwa4d.com UWA QQ群 ...

  3. golang安装开发环境配置

    本机系统:fedora28 step 1 百度搜索 golang 到 go 语言中文网,下载 golang 包,如果是 linux 系统可以直接点击此连接,也可去 go 语言中文网, https:// ...

  4. spring boot 配置全局日期类型转换器

    1. 首先自定义一个类型转换器 import org.springframework.core.convert.converter.Converter; import org.springframew ...

  5. mysql以zip安装,解决the service already exists(转载)

    喵喵亲测可用: 转自:https://www.cnblogs.com/dichters/p/5929209.html mysql以zip安装, mysqld -install 报错:​The serv ...

  6. 【一】,python简单爬虫实现

    一: 1.获取当前页的课程名称,地址:https://www.ichunqiu.com/courses/webaq 2.选取其中一门课程名称查看源代码: 代码如下: <p class=" ...

  7. Vue+webpack项目中,运行报错Cannot find module 'chalk'的处理

    刚开始用vue + webpack新建项目,在github上下载了一个示例,输入npm init >>>npm run dev 后报错 Cannot find module 'cha ...

  8. stat命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangcsdn/article/details/81012732 stat命令用于显示文件的状态信息.stat命令的 ...

  9. userdel命令详解

    基础命令学习目录首页 原文链接:http://www.360doc.com/content/15/0814/14/2149364_491595091.shtml 命 令: userdel  功能说明: ...

  10. linux, configure --prefix 的作用

    指定安装路径不指定prefix,则可执行文件默认放在/usr /local/bin,库文件默认放在/usr/local/lib,配置文件默认放在/usr/local/etc.其它的资源文件放在/usr ...