题目链接

洛谷

狗粮版

前置技能

  1. 初中基础的因式分解
  2. 线性筛
  3. \(O(nlog)\)的分解质因数
  4. 唯一分解定理

题解

首先来分解一下式子

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

通分可化为:

\[\frac{x+y}{xy}=\frac{1}{n!}
\]

两边同时乘\(xy*(n!)\)

\[(x+y)n!=xy
\]

移项得:

\[xy-(x+y)n!=0
\]

两边同时加上\((n!)^2\)

\[xy-(x+y)n!+(n!)^2=(n!)^2
\]

通过十字相乘可因式分解为:

\[(x-n!)(y-n!)=(n!)^2
\]

\[∵\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

\[∴x,y>n!
\]

又因为\(x,y\)为正整数,所以\((x-n!),(y-n!)\)也为正整数,所以我们不妨令

\[X=(x-n!),Y=(y-n!)
\]

则原式可以化为:

\[XY=(n!)^2
\]

根据唯一分解定理可知

\[n!=P_1^{a_1}P_2^{a_2}P_3^{a_3}...P_n^{a_n}(p_i为质数)
\]

\((n!)^2\)的因数个数为:

\[(2*a_1+1)*(2*a_2+1)*(2*a_3+1)*...*(2*a_n+1)
\]

所以我们只要算出\(a_1,a_2,a_3...a_n\)就好了

至于怎么算,线性筛一遍,在分解质因数,求\(a_i\)就好了

code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1000000;
const int mod = 1e9+7;
int prime[N+1],a[N+1],js,v[N+1],c[N+1];
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
void pd(){
for(int i=2;i<=N;i++){
if(!prime[i]) a[++js]=i,v[i]=i;
for(int j=1;j<=js;j++){
if(i*a[j]>N) break;
prime[i*a[j]]=1;
v[i*a[j]]=a[j];
}
}
}
main(){
int n=read(),x,ans=1;
pd();
v[1]=1;
for(int i=1;i<=n;i++)
for(int j=i;j!=1;j/=v[j])
c[v[j]]++;
for(int i=1;i<=N;i++)
ans*=(c[i]*2+1),ans%=mod;
printf("%lld",ans%mod);
}

[Violet]樱花的更多相关文章

  1. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  2. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  3. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  4. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

  5. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  6. luoguP1445 [Violet]樱花

    链接P1445 [Violet]樱花 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\) ...

  7. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  8. Luogu1445 [Violet]樱花

    题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...

  9. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

随机推荐

  1. PHP面向对象深入研究之【命名空间】与【自动加载类】

    命名空间 避免类名重复,而产生错误. <?php require_once "useful/Outputter.php"; class Outputter { // outp ...

  2. C# 异常内存信息导出Dump文件

    背景:很多情况下程序崩溃我们只能看到程序抛出来的异常信息,但是有时候异常信息不清不楚我们处理异常还是一头雾水,这种情况下我们就很希望能有种办法获取程序运行时的内存进行调试,查看其中的变量.参数.方法执 ...

  3. Python Twisted系列教程14:Deferred用于同步环境

    作者:dave@http://krondo.com/when-a-deferred-isnt/  译者:杨晓伟(采用意译) 你可以从这里从头开始阅读这个系列. 介绍 这部分我们要介绍Deferred的 ...

  4. 生成signature

    签名规则说明 1. 将参数先按键值排序(只做一级排序),进行key和value的拼接 2. 拼接完后,在最后面再拼接上分配的 appSecret 然后用sha1对拼接串加密 签名示例 假如传入参数: ...

  5. 关于Pycharm中如何注释

    主要有三种方法: ①在程序行前面加“#” ②将需要注释的代码用'''----''' 包起来,此方法类似C的注释方法 ③将需要注释的代码选住然后利用“Ctrl+/”进行注释 # test=input(' ...

  6. Oracle使用split和splitstr函数批量分隔字符串

    /* * Oracle 创建 split 和 splitstr 函数 */ /* 创建一个表类型 */ ) / /* 创建 split 函数 */ CREATE OR REPLACE FUNCTION ...

  7. Java面向对象-对象的多态性

    Java面向对象-对象的多态性 Java中的多态性表现: 1,方法的重载和重写(覆盖): 2,可以用父类的引用指向子类的具体实现,而且可以随时更换为其他子类的具体实现: 我们先搞个父类Animal: ...

  8. VS2010调用halcon的时候出现试图加载格式不正确的程序(this.hWindowControl1 = new HalconDotNet.HWindowControl();)

    [重要错误修改] /// <summary> /// 设计器支持所需的方法 - 不要 /// 使用代码编辑器修改此方法的内容. /// </summary> private v ...

  9. mysql 批量插入与单条插入 的效率比较

    1.数据插入性能(单个插入和批量插入) public class Test { private Long id; private String test; public Long getId() { ...

  10. java基础知识(一)之数据类型和运算符

    1.标识符:JAVA里面我们可以为之命名的就是标识符,如变量.方法.类等. 但是标识符只能包含字母.数字.下划线(_)和美元符号($),并且只能以字母.下划线和美元符号开头不能以数字开头.2.变量:在 ...