####
'''
tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据
slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None)
tensor_list:如[images,labels] = [['img1','image2','imag3','img4','img5','img6'],[1,2,3,4,5,6]]
num_epochs:可选参数,迭代次数 num_epochs=None 无限次遍历tensor列表 num_epochs=N 生成器只能遍历列表N次
shuffle:shuffle=True 乱序样本 shuffle=False需要在批处理时使用tf.train.shuffle_batch函数打乱样本
seed:随机数种子 在shuffle=True 时使用
capacity:设置tensor列表的容量
shared_name:可选参数,如果设置一个‘shared_name’,则在不同的上下文环境(Session)中可以通过这个名字共享生成的tensor
name:设置操作名称 '''
import tensorflow as tf ###思路:准备入文件名队列 创建线程 入队线程
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
for i in range(epoch_num):
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1]) '''
*************
0 [b'img1', 1] b'img1' 1
*************
1 [b'image2', 2] b'image2' 2
*************
2 [b'imag3', 3] b'imag3' 3
*************
3 [b'img4', 4] b'img4' 4
*************
4 [b'img5', 5] b'img5' 5
*************
5 [b'img6', 6] b'img6' 6
*************
6 [b'img1', 1] b'img1' 1
*************
7 [b'image2', 2] b'image2' 2
'''

准备 -- 创建线程 -- 入队线程

tensorflow|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners的更多相关文章

  1. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  2. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  3. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  4. tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners

      #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_pr ...

  5. tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...

  6. tf.train.slice_input_producer()

    tf.train.slice_input_producer处理的是来源tensor的数据 转载自:https://blog.csdn.net/dcrmg/article/details/7977687 ...

  7. 【转载】 tf.train.slice_input_producer()和tf.train.batch()

    原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------- ...

  8. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  9. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

随机推荐

  1. Python : Polymorphism

    class Animal: def __init__(self, name): # Constructor of the class self.name = name def talk(self): ...

  2. 如何优化MySQL千万级大表

    很好的一篇博客,转载 如何优化MySQL千万级大表 原文链接::https://blog.csdn.net/yangjianrong1985/article/details/102675334 千万级 ...

  3. C#中XmlTextWriter读写xml文件详细介绍

    XmlTextWriter类允许你将XML写到一个文件中去.这个类包含了很多方法和属性,使用这些属性和方法可以使你更容易地处理XML.为了使用这个类,你必须首先创建一个新的XmlTextWriter对 ...

  4. sessionStorage 使用方法

    作为html5中Web Storage的一种存储方式,localStorage和sessionStorage一样都是用来存储客户端临时信息的对象. W3c上给的介绍是这两者区别在于前者用于持久化的本地 ...

  5. .net 批量导出文件,以ZIP压缩方式导出

     1. 首先Nuget          ICSharpCode.SharpZipLib <script type="text/javascript"> $(funct ...

  6. LOJ6252. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡! 最短路+bitset

    题目传送门 https://loj.ac/problem/6252 https://lydsy.com/JudgeOnline/problem.php?id=5109 题解 首先跑最短路,只保留 \( ...

  7. HTML知识梳理(笔记)

    HTML常见元素 meta 定义和用法<meta> 元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和关键词. <meta> 标 ...

  8. Java字符串流学习

    字符串流 定义:字符串流,以一个字符为数据源,来构造一个字符流. 作用:在Web开发中,我们经常要从服务器上获取数据,数据返回的格式通过一个字符串(XML.JSON),我们需要把这个字符串构造为一个字 ...

  9. Arrays.asList()报错java.lang.UnsupportedOperationException

    问题: 使用工具类Arrays.asList()方法把数组转换成集合时,不能使用修改集合相关的方法,比如add,remove.这个ArrayList是Arrays类自己定义的一个内部类!这个内部类没有 ...

  10. java获取当月日期 和 周末

    /** * java获取 当月所有的日期集合 * @return */public static List<Date> getDayListOfMonth() { List list = ...