####
'''
tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据
slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None)
tensor_list:如[images,labels] = [['img1','image2','imag3','img4','img5','img6'],[1,2,3,4,5,6]]
num_epochs:可选参数,迭代次数 num_epochs=None 无限次遍历tensor列表 num_epochs=N 生成器只能遍历列表N次
shuffle:shuffle=True 乱序样本 shuffle=False需要在批处理时使用tf.train.shuffle_batch函数打乱样本
seed:随机数种子 在shuffle=True 时使用
capacity:设置tensor列表的容量
shared_name:可选参数,如果设置一个‘shared_name’,则在不同的上下文环境(Session)中可以通过这个名字共享生成的tensor
name:设置操作名称 '''
import tensorflow as tf ###思路:准备入文件名队列 创建线程 入队线程
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
for i in range(epoch_num):
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1]) '''
*************
0 [b'img1', 1] b'img1' 1
*************
1 [b'image2', 2] b'image2' 2
*************
2 [b'imag3', 3] b'imag3' 3
*************
3 [b'img4', 4] b'img4' 4
*************
4 [b'img5', 5] b'img5' 5
*************
5 [b'img6', 6] b'img6' 6
*************
6 [b'img1', 1] b'img1' 1
*************
7 [b'image2', 2] b'image2' 2
'''

准备 -- 创建线程 -- 入队线程

tensorflow|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners的更多相关文章

  1. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  2. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  3. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  4. tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners

      #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_pr ...

  5. tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...

  6. tf.train.slice_input_producer()

    tf.train.slice_input_producer处理的是来源tensor的数据 转载自:https://blog.csdn.net/dcrmg/article/details/7977687 ...

  7. 【转载】 tf.train.slice_input_producer()和tf.train.batch()

    原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------- ...

  8. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  9. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

随机推荐

  1. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  2. 4、、多变量线性回归(Linear Regression with Multiple Variables)

    4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...

  3. Day8---Python的字典类型及操作

    字典类 1.生成方法: a.介绍: 字典是键值对的集合,键值对 : 键是数据索引的扩展 b.生成方法: 使用{}  或者  dict()  a = {'a' = 1, 'b' = 2, 'c' = 3 ...

  4. python学习第二十二天文件byte类型

    所有的文件在计算机里面存储为二进制形式,但是我们有时候有需要将二进制转换为gbk或者utf-8形式,编码的时候encode 解码的时候decode ,下面简单阐述python二进制在文件传输过程的作用 ...

  5. k8s nginx ingress配置TLS

    在没有配置任何nginx下,k8s的nginx默认只支持TLS1.2,不支持TLS1.0和TLS1.1 默认的 nginx-config(部分可能叫 nginx-configuration)的配置如下 ...

  6. Zookeeper-技术专区-配置以及学习

    zookeeper 一.zookeeper下载 zookeeper下载可以直接去官网进行下载  https://zookeeper.apache.org/releases.html ,可以选择最新版本 ...

  7. SLA服务可用性4个9是什么意思?怎么达到?

    SLA:服务等级协议(简称:SLA,全称:service level agreement).是在一定开销下为保障服务的性能和可用性,服务提供商与用户间定义的一种双方认可的协定.通常这个开销是驱动提供服 ...

  8. C#面试 笔试题 二

    1.using关键字有什么用?什么是IDisposable? using可以声明namespace的引入,还可以实现非托管资源的释放,实现了IDisposiable的类在using中创建,using结 ...

  9. C#编程--第一天

    C#编程 一. 了解C#: 1. C#的定义及其特点 2.vs的集成开发环境:熟悉了解vs2012 二.C#语言基础 1.C#项目的组成结构: .config----配置文件(存放配置参数文件) .c ...

  10. 2019-9-8-WPF-渲染原理

    title author date CreateTime categories WPF 渲染原理 lindexi 2019-9-8 10:40:0 +0800 2018-7-15 16:2:47 +0 ...