[物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场
1. 静电场: 由静止电荷产生的稳定电场.
2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$$ 于是 $$\bex {\bf E}=-\n\phi,\quad -\cfrac{\p}{\p x}\sex{\ve \cfrac{\p\phi}{\p x}}-\cfrac{\p}{\p y}\sex{\ve \cfrac{\p\phi}{\p y}} -\cfrac{\p}{\p z}\sex{\ve \cfrac{\p\phi}{\p z}}=\rho_f. \eex$$ 而在媒介内部, 静电势 $\phi$ 满足非齐次的拟调和方程.
2. 边界条件 (交界面条件) $$\bex \sez{{\bf D}}\cdot{\bf n}=\omega_f,\quad \sez{{\bf E}}\times{\bf n}={\bf 0} \eex$$ 化为电势满足的边界条件: $$\bex \sez{\ve\cfrac{\p\phi}{\p n}}=-\omega_f,\quad [\phi]=0\quad\sex{\mbox{经调整}}. \eex$$
4. 其他边界条件
(1) 带点导体以外空间的静电场
a. 每个导体上电荷分布的总和 $=$ 所加置的电荷总量.
b. 导体所带电荷以面电荷的形式分布在导体表面上 (趋肤效应).
c. 每个导体是等势体, 其上静电势为常数.
d. 自由电荷通过导体边界向外发出的总电通量 $=$ 导体上总自由电荷: $$\bex \int_{\p\Omega}{\bf D}\cdot{\bf n}\rd S=Q_f. \eex$$ 而边界条件: $$\bex \phi=\const,\quad \int_{\p\Omega}\ve\cfrac{\p \phi}{\p n}\rd S=Q_f\quad\sex{{\bf n} \mbox{ 指向导体内部}}. \eex$$ 这称为等直面边界条件 (总流量边界条件).
(2) 求解区域为无界域时, 边界条件还需加上: $$\bex \lim_{(x,y,z)\to\infty}\phi(x,y,z)=0. \eex$$
(3) 带电导体对称时, 边界条件须加上: $$\bex \cfrac{\p\phi}{\p n}=0. \eex$$
5. 静电场中的量用 $\phi$ 表示
(1) 比如电磁场能量密度: $$\bex \cfrac{1}{2}{\bf E}\cdot{\bf D}=\cfrac{\ve}{2}E^2=\cfrac{\ve}{2}|\n\phi|^2. \eex$$ 电磁能量: $$\beex \bea U_{e,m}&=\cfrac{1}{2}\int_\Omega \ve|\n \phi|^2\rd V\\ &=\cfrac{1}{2}\int_\Omega -{\bf D}\cdot\n \phi\rd V\\ &=\cfrac{1}{2}\int_\Omega \Div {\bf D} \cdot \phi\rd V -\cfrac{1}{2}\int_{\p\Omega} \Div(\phi{\bf D})\rd S\\ &=\cfrac{1}{2}\int_\Omega \rho_f\phi\rd V. \eea \eeex$$
[物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- linux上修改mysql登陆密码
1. 修改MySQL的登录设置: # vi /etc/my.cnf 2. 在[mysqld]的段中加上一句:skip-grant-tables 例如: [mysqld] port ...
- springboot mybatis搭建
非常easy直接写,没有搭建成分 1.目录 2. @RestController public class UserController { @RequestMapping("/hello& ...
- 网易云歌词解析(配合audio标签实现本地歌曲播放,歌词同步)
先看下效果 github上做的一个音乐播放器: https://github.com/SorrowX/electron-music 中文歌曲 英文歌曲(如果有翻译的中文给回返回出去) 韩文歌曲 来看下 ...
- 在项目中迁移MS SQLServer到Mysql数据库,实现MySQL数据库的快速整合
在开发项目的时候,往往碰到的不同的需求情况,兼容不同类型的数据库是我们项目以不变应万变的举措之一,在底层能够兼容多种数据库会使得我们开发不同类型的项目得心应手,如果配合快速的框架支持,那更是锦上添花的 ...
- 老铁啊,我同你讲, 这年头不会点 Git 真不行!!!
-------------------------------------知识是一点一点的积累的, 也是一点一点的吸收的,没有人一口就能吃成一个胖子. 版本控制 说到版本控制,脑海里总会浮现大学毕业是 ...
- BeanShell用法汇总(部分摘抄至网络)
说明:本文部分资料摘抄至 来源: http://www.cnblogs.com/puresoul/p/4915350.html 来源: http://www.cnblogs.com/puresoul/ ...
- 转:Flutter动画二
1. 介绍 本文会从代码层面去介绍Flutter动画,因此不会涉及到Flutter动画的具体使用. 1.1 Animation库 Flutter的animation库只依赖两个库,Dart库以及phy ...
- 其它综合-CentOS7 忘记root密码
CentOS7 忘记root密码 长时间不用的 CentOS 机器再次开机的时候忽然忘记了密码,总不能就重装一台吧,还有好多服务在机器上,于是决定重置root的密码. 如果是已经开启的机器,需要进行关 ...
- Python——Django目录说明
一.Django安装好后,建立djangosite的开发项目 #django-admin startproject djangosite 二.djangosite目录内容 ''' djangosite ...
- python基础5 字典
一.字典 字典是python的基础数据类型之一:字典可以存储大量的数据,关系型数据. 同样他也是python中唯一的映射类的数据类型. 数据类型的分类: 可变的(不可哈希)数据类型:list,dict ...